Efficacy of vibrotactile positional therapy devices on patients with positional obstructive sleep apnoea: a systematic review and meta-analysis

Abdullah S ALQarni,1,2,3 Chris D Turnbull,4,5,6 Mary J Morrell,1 Julia L Kelly1,2

ABSTRACT

Introduction Vibrotactile positional therapy (PT) devices are a new treatment modality for positional obstructive sleep apnoea (POSA). This review aimed to determine the effect of vibrotactile PT on the Apnoea Hypopnoea Index (AHI) and the percentage of time spent in the supine position (%Tsupine) in patients with POSA, compared with baseline. Secondary aims were to investigate the effect on daytime sleepiness, quality of life and sleep quality.

Methods A systematic review and meta-analysis was performed of randomised controlled trials (RCTs) and cohort studies that investigated the effect of vibrotactile PT in POSA patients. Searches were performed via MEDLINE, CENTRAL and Embase up to 29 October 2022.

Results 1119 studies were identified, 18 studies met the inclusion criteria (10 RCTs, 8 cohort studies). The use of vibrotactile PT significantly reduced the AHI at follow-up compared with baseline (mean difference (95% CI) −9.19 events/hour (−11.68 to −6.70); p<0.00001). The mean %Tsupine was also significantly reduced (mean difference (95% CI) −32.79% (−38.75% to −26.83%); p<0.00001). The percentage changes in the AHI and %Tsupine were 43% and 70%, respectively. Secondary outcomes were daytime sleepiness, quality of life and sleep indices. These showed minimal change, although follow-up was short.

Conclusion Vibrotactile PT devices are effective in treating POSA; reducing both AHI and %Tsupine. The effect on sleep quality, daytime sleepiness and disease-specific quality of life was minimal. However, there were limited data and follow-up was often brief, meaning that further research is needed to determine the effect of vibrotactile PT on patient-centred outcomes.

PROSPERO registration number CRD42020188617.

WHAT IS ALREADY KNOWN ON THIS TOPIC

⇒ Vibrotactile positional therapy is a new treatment modality for patients with positional sleep apnoea, which reduces time in the supine position. It may also reduce the severity of obstructive sleep apnoea (OSA), thereby improving patient-centred outcomes.

WHAT THIS STUDY ADDS

⇒ Vibrotactile positional therapy was effective in reducing time spent in the supine position and the severity of OSA, plus daytime sleepiness; however, this latter finding did not reach a clinically meaningful difference.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY

⇒ This study highlighted a lack of patient-centred outcomes beyond daytime sleepiness, such as daytime functioning and sleep quality indices, therefore, well-designed clinical trials are required to fill these evidence gaps.

INTRODUCTION

Obstructive sleep apnoea (OSA) is a common sleep disorder with nearly 1 billion people estimated to have OSA worldwide.1,2 The supine sleep position is a risk factor for OSA,3 and those with OSA that occurs predominantly or exclusively in the supine position are referred to as patients with positional OSA (POSA).4 The exact definition of POSA varies,3,4 but it is often defined as an Apnoea Hypopnoea Index (AHI) in the supine position that is twice that of the non-supine AHI, with an overall AHI>5 events/hour.5

More than 50% of patients, diagnosed with OSA, have POSA.6–12 Patients with POSA are more likely to be male,13 younger,14 have a lower body mass index (BMI),12 smaller neck and waist circumferences, and lower Mallampati scores,7 than those with non-POSA. OSA severity in patients with POSA tends to be milder, with a prevalence of POSA of 80% in mild-to-moderate OSA, compared with 40% in severe OSA.12

In patients with POSA, positional therapy (PT) has been proposed as a treatment option. Recent guidelines recommend that it is considered in those with POSA in whom other treatments such as continuous positive airway pressure (CPAP) are unsuitable or not tolerated.15 PT is any technique that prevents patients sleeping in the supine position.16 Traditional PT techniques use mechanical avoidance of the supine position and include the use of a bulky object (eg, a tennis ball attached to the back of nightwear or a wedge-shaped pillow). These techniques are efficacious but are poorly tolerated,16–18 with low long-term compliance rates (10%).17 Traditional PT techniques, therefore, have not succeeded as a satisfactory routine treatment for POSA patients.

Vibrotactile PT devices are a relatively new development for the treatment of POSA. These light-weight devices contain position sensors to determine the body position. They also contain...
small haptic motors (similar to those found in a smartphone) which produce an incremental vibratory stimulus in response to movement into the supine position, thus encouraging a position change. Additionally, all devices are capable of objectively monitoring usage and adherence data. Vibrotactile PT devices can be positioned at different sites on the body; back of the neck, chest 19 or the forehead 21 (see figure 1).

The primary aim of this systematic review and meta-analysis was to investigate the effect of vibrotactile PT devices on the AHI and the percentage time spent supine (%T supine) in patients with POSA, in comparison to baseline. A secondary aim was to investigate the effect of vibrotactile PT devices on daytime sleepiness, daytime functioning, quality of life, sleep efficiency and arousal from sleep.

METHODS
This systematic review was performed in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocol (PRISMA-P) and was registered on PROSPERO (CRD42020188617).

Inclusion criteria
1. Study type: randomised parallel controlled and cross-over trials and prospective cohort studies.
2. Population: studies that involved adult participants diagnosed with POSA.
3. Type of intervention: studies that used vibrotactile PT devices.
4. Type of outcome: primary outcomes were the AHI and %T supine. Both variables were measured objectively either by polygraphy or polysomnography (PSG) at a follow-up visit compared with baseline. In addition, the following secondary outcomes that assessed daytime functioning and quality of life outcomes, compared with baseline, were extracted: Epworth Sleepiness Scale (ESS) scores, 22 Functional Outcomes of Sleep Questionnaire (FOSQ) global score, 23 The 36-Item Short Form Health Survey (SF-36) scores. 24 Other secondary outcome measures included objectively measured sleep quality outcomes (sleep efficiency and arousal index).

Exclusion criteria
1. Studies that were not in the English language.
2. Studies that involved animals.
3. Studies that used diagnostic modalities other than polygraphy or PSG.

Search strategy
To identify relevant research articles, an electronic search of the following databases was performed: Medline (Ovid), Embase, Cochrane Library (CENTRAL). The search strategy was developed in consultation with an expert librarian. The following Medical Subject Headings (MeSH) terms, keywords and combinations were used: obstructive sleep apnoea, obstructive sleep apnoea, obstructive sleep apnoea hypopnoea syndrome, obstructive sleep apnoea hypopnoea syndrome, OSA, OSAHS, POSA, ePOSA; positional, position, posture, supine, supine-isolated, supine-predominant, supine-exclusive, dorsal, lateral; treatment, therapy, device, trainer. The search strategy for all the electronic databases is included in online supplemental, section 1.1, pg 2.

Search procedures
Searches were performed by two authors (ASA and JLK). All identified articles were imported into the COVIDENCE website (Covidence systematic review software, Veritas Health Innovation, Melbourne, Australia) and duplicates were removed. For the assessment of eligibility, both reviewers (ASA and JLK) screened titles and abstracts of all identified research articles; ineligible articles were excluded. An additional manual search of the reference lists of the eligible articles as well as relevant systematic reviews was performed to capture articles that were not identified in the original electronic search. A search for ongoing clinical trials was also performed in the databases. Full-text review of all the eligible articles was performed by two reviewers (ASA and JLK). Disagreement was resolved through discussion until a consensus was reached. Where consensus could not be reached, the decision of a third reviewer (CDT) was sought.

Data extraction
From each research article, the following details were extracted and checked by two reviewers (ASA and JLK): research study characteristics, participant characteristics, intervention and comparator characteristics. A standardised Microsoft Excel data extraction form was used. In case of missing data, the corresponding author was contacted by email. If data could not be obtained from the authors, calculation methods were used to determine the mean and SD. 25 If data could neither be sourced from the authors or calculated by a standard method, then the data were not included in the quantitative meta-analysis. If both per-protocol and intention-to-treat data were available, then the more conservative intention-to-treat data were used. Two reviewers (ASA and JLK) independently judged each risk of bias item for all the included clinical trials. Disagreement was resolved through discussion until a consensus was reached. If consensus could not be reached, the decision of a third reviewer (CDT) was sought. The ‘Risk of Bias’ tool in the Cochrane Collaboration RevMan V.5.4 software (Review Manager (RevMan) software, The Cochrane Collaboration, Copenhagen) was used for randomised studies and the Risk Of Bias In Non-Randomized...
Studies of Interventions (ROBINS-I) tool was used for cohort studies.26

Data analysis
Synthesis of the results was aimed at clinically relevant outcomes including polygraphy or PSG-measured variables and daytime functioning measures. A meta-analysis was performed using RevMan V.5.4 software (Review Manager (RevMan) software, The Cochrane Collaboration, Copenhagen). Results of continuous outcomes were expressed as mean difference and 95% CI. A random-effect model was used for the analysis of the effect of the vibrotactile PT at follow-up, compared with the baseline. Heterogeneity among the included studies was assessed using prediction interval, I² statistics and p value. Subgroup meta-analyses based on the level of OSA severity, type of study design and the bodily location where vibrotactile PT device was worn were performed if I² was ≥50% and p<0.1.

RESULTS
This systematic search revealed 1119 articles, of which 374 were duplicates. After title and abstract screening, 25 articles were assessed for eligibility for full-text reading. After exclusions, 18 studies were included in this review, of which 10 were clinical trials (five parallel randomised controlled trials (RCTs) and five cross-over trials) and eight were cohort studies. The results of the search procedure are presented in a PRISMA flow chart (online supplemental figure S1, online supplemental file, pg 4). This search also identified four ongoing registered clinical trials (online supplemental figure S1, online supplemental file, pg 4).

Of the included studies, participant age (mean±SD) ranged from 44±11.2 to 64.8±9.5 years. In all studies, the average BMI fell into the overweight category, that is, BMI 25–30 kg/m². The studies tended to include participants across the OSA disease spectrum with no study limiting participants to a single OSA severity. Therefore, the level of OSA severity for each study was based on the mean baseline AHI of that study: mild (four studies: two clinical trials and two cohort study), moderate (12 studies: seven clinical trials and five cohort studies) and severe (two studies: one clinical trial and 1 cohort study).

The majority of studies used chest-worn PT devices (six clinical trials and six cohort studies), three used neck-worn devices (two clinical trials and one cohort study), two studies used a forehead-secured PT device (one clinical trial and one cohort study) and one study (one clinical trial) used a prototype.

Across the 10 clinical trials, the control group varied between inactive PT treatment (two studies), no treatment (one study), mandibular advancement device (MAD) (two studies), tennis ball technique (TBT) (one study) and auto-titrated positive airway pressure (APAP) (two studies). One study used two different comparisons (MAD only, and combined MAD and PT). One study used two comparisons (no treatment and inactive PT treatment).

The duration of follow-up was different between the studies. In three studies, the follow-up duration was less than 1 week (two clinical trials, one cohort study). In six studies, the follow-up durations were between 1 week and a month (two clinical trials and four cohort studies). In the remaining nine studies, the follow-up durations were between 1 and 3 months (four clinical trials and three cohort studies). These studies are summarised in table 1 and table 2 for clinical trials and cohort studies, respectively.

Primary outcomes
AHI with vibrotactile PT at follow-up compared with baseline
Eighteen studies measured the total AHI at follow-up (with vibrotactile PT) compared with baseline (no vibrotactile PT). One study27 was excluded as mean (SD) data could not be calculated. Pooled analysis of 17 studies (n=700) showed a statistically significant reduction in the total AHI at follow-up compared with baseline (mean difference (95% CI) −9.19 (−11.68 to −6.70); p<0.00001) (online supplemental figure S2, online supplemental file, pg 5). The analysis based on the

<table>
<thead>
<tr>
<th>Authors and year</th>
<th>Type of sleep study</th>
<th>Design</th>
<th>Sample size</th>
<th>Intervention</th>
<th>Location and name of device</th>
<th>Control</th>
<th>Follow-up/wash-out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bignold et al, 2011</td>
<td>Polygraphy</td>
<td>Randomised cross-over trial</td>
<td>n=15</td>
<td>PT</td>
<td>Chest; BuzzPOD</td>
<td>Inactive treatment</td>
<td>3 weeks/1 week wash-out</td>
</tr>
<tr>
<td>van Maanen et al, 2012</td>
<td>PSG</td>
<td>Randomised cross-over trial</td>
<td>n=30</td>
<td>PT</td>
<td>Neck, prototype</td>
<td>Inactive treatment</td>
<td>1 night with device on and 1 night off/1–2 weeks wash-out</td>
</tr>
<tr>
<td>Dieitjens et al, 2015</td>
<td>PSG</td>
<td>Randomised cross-over trial</td>
<td>n=20</td>
<td>PT</td>
<td>Chest, Night Balance</td>
<td>MAD only, PT+MAD</td>
<td>1 night intervention/no wash-out</td>
</tr>
<tr>
<td>Ejsvogel et al, 2015</td>
<td>PSG</td>
<td>Parallel RCT</td>
<td>n=55</td>
<td>PT</td>
<td>Chest, Night Balance</td>
<td>TBT</td>
<td>1 month</td>
</tr>
<tr>
<td>Benoist et al, 2017</td>
<td>PSG</td>
<td>Multicentre parallel RCT</td>
<td>n=99</td>
<td>PT</td>
<td>Chest, Night Balance</td>
<td>MAD</td>
<td>3 months</td>
</tr>
<tr>
<td>Laub et al, 2017</td>
<td>Polygraphy</td>
<td>Parallel RCT</td>
<td>n=101</td>
<td>PT</td>
<td>Chest, Night Balance</td>
<td>No treatment</td>
<td>2 months</td>
</tr>
<tr>
<td>Berry et al, 2019</td>
<td>PSG</td>
<td>Multicentre randomised cross-over trial</td>
<td>n=171</td>
<td>PT</td>
<td>Chest, Night Balance</td>
<td>APAP</td>
<td>6 weeks/no wash-out</td>
</tr>
<tr>
<td>Mok et al, 2020</td>
<td>PSG</td>
<td>Randomised cross-over trial</td>
<td>n=40</td>
<td>PT</td>
<td>Neck, Night Shift</td>
<td>APAP</td>
<td>8 weeks/1 week wash-out</td>
</tr>
<tr>
<td>Hidalgo Armas et al, 2021</td>
<td>PSG</td>
<td>Parallel RCT</td>
<td>n=128</td>
<td>PT</td>
<td>Forehead, Somnibel</td>
<td>No treatment, Inactive treatment</td>
<td>12 weeks</td>
</tr>
<tr>
<td>Suzuki et al, 2021</td>
<td>PSG</td>
<td>Parallel RCT</td>
<td>n=160</td>
<td>PT</td>
<td>Neck, Night Shift</td>
<td>MAD</td>
<td>8 weeks</td>
</tr>
</tbody>
</table>

For more information on the location and the names of the device, see figure 1.

APAP, auto-adjusting positive airway pressure; MAD, mandibular advancement device; n, sample size; PSG, polysomnography; PT, positional therapy; RCT, randomised controlled trials; TBT, tennis-ball technique.
Sleep study design, indicated a more conservative reduction of AHI in the RCTs, compared with the cross-over or cohort studies (figure 2). Pooled analysis of five parallel RCTs (n=250) showed a statistically significant reduction in the total AHI at follow-up compared with baseline (mean difference (95% CI) −5.09 of events/hour (−7.37 to −2.81); p<0.0001). Five studies were cross-over randomised trials (n=215). The pooled subgroup analysis showed a larger and statistically significant effect size (mean difference (95% CI) −13.74 of events/hour (−15.49 to −11.99); p<0.00001). The pooled subgroup analysis of the seven cohort studies (n=235) showed a statistically significant reduction in the total AHI at follow-up compared with baseline (mean difference (95% CI) −9.69 of events/hour (−13.24 to −6.14); p<0.0001).

Percentage of time spent in the supine position (%Tsupine) with vibrotactile PT at follow-up compared with baseline Pooling of the results from 17 studies (n=700) that compared mean %Tsupine at follow-up compared with baseline showed a significant reduction in the mean %Tsupine (mean difference (95% CI) −32.79% (−38.75% to −26.83%); p<0.00001) (online supplemental figure S3, online supplemental file, pg 5). The analysis based on the study design, included parallel RCTs, cross-over randomised trials and cohort studies (figure 3). Five studies were parallel RCTs (n=247) and showed statistically significant reduction in the mean %Tsupine at follow-up, compared with baseline (mean difference (95% CI) −30.62% (−49.32% to −11.93%), p<0.001). The pooled analysis of five cross-over randomised trials (n=218) also showed significant reduction in the mean %Tsupine at follow-up compared with baseline (mean difference (95% CI) −35.10% (−42.71% to −27.48%), p=0.00001). As did the pooled subgroup analysis of the seven cohort studies (n=235), which showed significant reduction in the mean %Tsupine at follow-up compared with baseline (mean difference (95% CI) −33.71% (−39.83% to −27.58%), p=0.00001).

Secondary outcomes
Epworth Sleepiness Scale
ESS data were available from nine studies (n=411). There was a significant reduction in the mean ESS score at follow-up

Table 2 Summary of the baseline characteristics of the included cohort studies

<table>
<thead>
<tr>
<th>Authors and year</th>
<th>Type of sleep study</th>
<th>Design</th>
<th>Sample size</th>
<th>Intervention</th>
<th>Location and name of device</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>van Maanen et al, 2013</td>
<td>PSG</td>
<td>Cohort study</td>
<td>n=31</td>
<td>PT</td>
<td>Chest, Night Balance</td>
<td>1 month</td>
</tr>
<tr>
<td>van Maanen and de Vries, 2014</td>
<td>Polygraphy</td>
<td>Multicentre cohort study</td>
<td>n=106</td>
<td>PT</td>
<td>Chest, Night Balance</td>
<td>6 months</td>
</tr>
<tr>
<td>Levendowski et al, 2014</td>
<td>PSG</td>
<td>Cohort study</td>
<td>n=30</td>
<td>PT</td>
<td>Chest, Night Balance</td>
<td>1 month</td>
</tr>
<tr>
<td>Scarlata et al, 2016</td>
<td>PSG</td>
<td>Cohort study</td>
<td>n=20</td>
<td>PT</td>
<td>Neck, Night Shift</td>
<td>3 days</td>
</tr>
<tr>
<td>Beyers et al, 2018</td>
<td>PSG</td>
<td>Cohort study</td>
<td>n=79</td>
<td>PT</td>
<td>Chest, Night Balance</td>
<td>1 month</td>
</tr>
<tr>
<td>de Ruiter et al, 2018</td>
<td>PSG</td>
<td>Cohort study</td>
<td>n=99</td>
<td>PT</td>
<td>Chest, Night Balance</td>
<td>12 months</td>
</tr>
<tr>
<td>Hidalgo Armas et al, 2019</td>
<td>PSG</td>
<td>Cohort study</td>
<td>n=12</td>
<td>PT</td>
<td>Forehead, Somnibel</td>
<td>4 weeks</td>
</tr>
<tr>
<td>Beyers et al, 2019</td>
<td>PSG</td>
<td>Cohort study</td>
<td>n=36</td>
<td>PT</td>
<td>Chest, Night Balance</td>
<td>12 months</td>
</tr>
</tbody>
</table>

For more information on the location and the names of the device, see figure 1.

n, sample size; PSG, polysomnography; PT, positional therapy.

Figure 2 Forest plot comparing total AHI with and without vibrotactile PT (baseline) based on study design. AHI, Apnoea Hypopnoea Index; IV, inverse variance; PT, positional therapy; RCT, randomised controlled trial.

Table 2

<table>
<thead>
<tr>
<th>Study and Subgroup</th>
<th>AHI with PT</th>
<th>Mean (events/h)</th>
<th>SD (events/h)</th>
<th>Total</th>
<th>Weight</th>
<th>Mean Difference (95% CI)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1 Parallel RCTs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bjorndal et al, 2011</td>
<td>9.8</td>
<td>7.6</td>
<td>27</td>
<td>11.4</td>
<td>4.9</td>
<td>29</td>
<td>7.2%</td>
</tr>
<tr>
<td>Brossi et al, 2017</td>
<td>9.0</td>
<td>7.3</td>
<td>48</td>
<td>13.9</td>
<td>5.9</td>
<td>48</td>
<td>7.6%</td>
</tr>
<tr>
<td>Lao et al, 2017</td>
<td>11.4</td>
<td>9.8</td>
<td>52</td>
<td>16.6</td>
<td>8.5</td>
<td>52</td>
<td>7.3%</td>
</tr>
<tr>
<td>Hidalgo Armas et al, 2021</td>
<td>20.4</td>
<td>13.4</td>
<td>43</td>
<td>30.6</td>
<td>10.0</td>
<td>43</td>
<td>5.1%</td>
</tr>
<tr>
<td>Sasaki et al, 2021</td>
<td>16.7</td>
<td>17.5</td>
<td>80</td>
<td>24.2</td>
<td>17.1</td>
<td>80</td>
<td>8.0%</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>252</td>
<td>232</td>
<td>33.9</td>
<td></td>
<td></td>
<td>−6.09 (−7.37, −4.81)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.2 Cross-over randomised trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>van Maanen et al, 2012</td>
<td>12.8</td>
<td>12</td>
<td>30</td>
<td>27.7</td>
<td>13.1</td>
<td>30</td>
<td>5.4%</td>
</tr>
<tr>
<td>Deleers et al, 2015</td>
<td>11.6</td>
<td>8.4</td>
<td>30</td>
<td>23.4</td>
<td>11.3</td>
<td>30</td>
<td>5.5%</td>
</tr>
<tr>
<td>Beaio et al, 2019</td>
<td>7.3</td>
<td>6.8</td>
<td>110</td>
<td>21.5</td>
<td>8.3</td>
<td>110</td>
<td>7.9%</td>
</tr>
<tr>
<td>Muller et al, 2020</td>
<td>13</td>
<td>13.8</td>
<td>40</td>
<td>23.4</td>
<td>15.5</td>
<td>40</td>
<td>5.3%</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>265</td>
<td>265</td>
<td>26.9</td>
<td></td>
<td></td>
<td>−13.12 (−14.38, −11.86)</td>
<td></td>
</tr>
</tbody>
</table>

1.2.3 Cohort studies									
van Maanen et al, 2013	14.4	11.2	31	17.3	5.7	31	6.6%	−2.90 (−3.32, −1.52)	2013
Leventowski et al, 2014	7.5	7.7	30	24.7	14.7	30	5.6%	−17.20 (−21.34, −11.28)	2014
Scarlata et al, 2014	4.4	5.5	20	16.8	8.5	20	6.3%	−12.40 (−17.21, −7.59)	2016
delRutier et al, 2015	7.5	5.0	29	14.1	6.9	29	7.2%	−6.60 (−9.68, −3.52)	2015
Beyers et al, 2016	9.0	17.0	70	19.5	31.1	70	4.5%	−8.70 (−14.71, −2.69)	2016
Hidalgo Armas et al, 2019	19.6	7.4	12	33.5	14.7	12	3.8%	−13.90 (−23.27, −4.54)	2019
Beyers et al, 2019	9.4	9.8	34	17.3	9.5	34	8.6%	−8.90 (−12.26, −5.54)	2019
Subtotal (95% CI)	235	235	40.6			−9.89 (−13.24, −6.54)			

| Total (95% CI) | 790 | 790 | 100.0% | | | −8.91 (−11.68, −6.13) | |

For more information on the location and the names of the device, see figure 1.

n, sample size; PSG, polysomnography; PT, positional therapy; RCT, randomised controlled trial.

Figure 2 Forest plot comparing total AHI with and without vibrotactile PT (baseline) based on study design. AHI, Apnoea Hypopnoea Index; IV, inverse variance; PT, positional therapy; RCT, randomised controlled trial.
compared with baseline by a mean difference of -1.17 (95% CI -1.75 to -0.58) ($p<0.0001$) (figure 4).

Quality of life (FOSQ global score and SF-36 vitality score)
FOSQ data were only available from four studies (n=224). One other study was excluded as they used a different FOSQ version with a different FOSQ global score. The use of vibrotactile PT resulted in a significant increase in the mean global FOSQ score by a mean difference of $+0.56$ (95% CI $+0.12$ to $+1.00$) ($p=0.01$) (online supplemental figure S4, online supplemental file, pg 6).

SF-36 vitality score data were available from only two studies (n=150). The use of vibrotactile PT resulted in a significant increase in the mean vitality score by a mean difference of $+6.72$ (95% CI $+2.52$ to $+10.92$) ($p=0.002$) (online supplemental figure S5, online supplemental file, pg 6).

Sleep efficiency
Sleep efficiency data were available from 11 studies (n=417). The use of vibrotactile PT did not result in a statistically significant difference in the mean sleep efficiency with mean difference of $+0.74$ (95% CI -0.63 to $+2.11$) ($p=0.29$) (online supplemental figure S6, online supplemental file, pg 6).

Arousal index
The arousal index data were available from 10 studies (n=372). Pooling of these data showed that the use of vibrotactile PT resulted in a small significant reduction in the mean arousal index; mean difference of -3.11 (95% CI -6.00 to -0.21) ($p=0.04$) (online supplemental figure S7, online supplemental file, pg 7).

Figure 3 Forest plot comparing percentage of time spent in supine position with and without vibrotactile PT (baseline) based on study design. %Tsupine, percentage of time spent in supine position; IV, inverse variance; PT, positional therapy; RCT, randomised controlled trial.

Figure 4 Forest plot of clinical trials and cohort studies comparing Epworth Sleepiness Scale (ESS) with and without vibrotactile PT (baseline). IV, inverse variance; PT, positional therapy.
Sensitivity analyses
Because of the statistically significant heterogeneity that was found in most of the results, subgroup analyses were performed for the primary outcome variables.

AHI with and without vibrotactile PT
The result of the random-effects model of the AHI with and without PT showed that the heterogeneity was statistically significant with p<0.00001 and I² statistics of 81%. Therefore, predetermined subgroup analyses were done based on the type of study design (outlined in the primary outcomes results), OSA severity and the body location where vibrotactile PT device was worn.

For the subgroup analysis based on OSA severity, the level of OSA severity was determined based on the average baseline value of the AHI in each included study (online supplemental figure S8, online supplemental file, pg 7).

Mild OSA
Three studies included 104 participants with mild OSA (ie, average baseline AHI<15 events/hour). Pooling of the results showed reduction in the AHI at follow-up compared with baseline (mean difference (95% CI) −4.42 events/hour (−7.10 to −1.75), p=0.001) (online supplemental figure S8, online supplemental file, pg 7). This equated to a 34% reduction in AHI. The I² statistic in this model was higher, which might be explained by the presence of other factors that contributed to heterogeneity such as duration of follow-up.

Moderate and severe OSA
Fourteen studies included 596 participants with moderate and severe OSA (ie, average baseline AHI≥15 events/hour). The results showed that there was a significant reduction in the AHI at follow-up compared with baseline (mean difference (95% CI) −10.50 events/hour (−13.01 to −7.99), p<0.00001) (online supplemental figure S8, online supplemental file, pg 7). This equated to a 46% reduction in AHI.

A further subgroup analysis was completed based on the location on body where the vibrotactile PT device was worn (chest-worn PT device vs neck-worn PT device) (online supplemental figure S9, online supplemental file, pg 8). However, we were not able to complete subgroup analysis on studies that used forehead-secured devices because of the insufficient number of studies.

Chest-worn device
Pooled subgroup analysis of ten studies that used chest-worn device (n=472) showed a statistically significant reduction in mean %T supine at follow-up compared with baseline (mean difference (95% CI) −38.28% (−59.79% to –16.78%) (p=0.0005).

Neck-worn device
Pooled analysis of four studies that used neck-worn device (n=173) showed a statistically significant reduction in mean %T supine at follow-up compared with baseline (mean difference (95% CI) −32.35% (−37.80% to −26.91%) (p<0.00001).

Percentage of time spent in the supine position
Heterogeneity results of the %T supine model were statistically significant with p<0.00001 and I² statistics of 88%. Subgroup analyses were performed, as for AHI, based on the type of study design (outlined in the primary outcomes results), OSA level of severity and the body location where vibrotactile PT device was worn.

Mild OSA
Three studies included 101 participants with mild OSA and compared mean %T supine with and without vibrotactile PT. There was a significant reduction in the mean %T supine at follow-up compared with baseline (mean difference (95% CI) −25.60% (−31.13 to −20.07) (p<0.00001) (online supplemental figure S10, online supplemental file, pg 8). The calculated percentage of change was 64%.

Moderate and severe OSA
Fourteen studies included 599 participants with moderate and severe OSA and compared mean %T supine with and without vibrotactile PT. There was a significant reduction in the mean %T supine at follow-up compared with baseline (mean difference (95% CI) −34.58% (−41.08% to −28.08%) (p<0.00001) (online supplemental figure S10, online supplemental file, pg 8). The calculated percentage of change was 71%.

A further subgroup analysis based on the location on body where the vibrotactile PT device was worn (chest-worn PT device neck-worn PT device) (online supplemental figure S11, online supplemental file, pg 9). However, we were not able to complete subgroup analysis on studies that used forehead-secured devices because of the insufficient number of studies.

Chest-worn device
Pooled subgroup analysis of 10 studies that used chest-worn device (n=472) showed a statistically significant reduction in mean %T supine at follow-up compared with baseline (mean difference (95% CI) −32.35% (−37.80% to −26.91%) (p<0.00001).

Neck-worn device
Pooled analysis of four studies that used neck-worn device (n=173) showed a statistically significant reduction in mean %T supine at follow-up compared with baseline (mean difference (95% CI) −38.28% (−59.79% to −16.78%) (p=0.0005).

Risk of bias and evidence quality assessment
The main reason for increased risk of bias in the included randomised studies is the difficulty to blind participants from different interventions (APAP, MAD, TBT or no device) (online supplemental figure S12, online supplemental file, pg 9). The main reasons for risk of bias in cohort studies were moderate risk of bias due to confounding (online supplemental figure S13, online supplemental file, pg 10). Grading Recommendations, Assessment, Development and Evaluations (GRADE) approach to quality of evidence is presented in table 3 for our three most important outcomes (AHI, %T supine and ESS). Evidence was similar from subgroups of RCTs, cross-over and cohort studies, representing a high quality of evidence; risk of bias was not sufficiently large to decrease confidence in the estimated treatment effect and no studies were excluded due to risk of bias. Our Funnel plot (online supplemental figure S14, online supplemental file, pg 10) showed some points outside the funnel and an absence of smaller studies, suggestive of publication bias meaning evidence was downgraded by one point. For AHI and %T supine, imprecision was not highly evident in this review.
The main findings of this systematic review and meta-analysis showed that vibrotactile PT is effective in reducing AHI and %T_supine in patients with POSA. Pooled data also showed a reduction in daytime sleepiness and a disease-specific quality of life score (FOSQ), but these secondary findings did not reach a clinically meaningful difference. Additionally, there were minimal improvements in sleep efficiency and arousal index. Therefore, according to the Grading Recommendations, Assessment, Development and Evaluations (GRADE) approach, the quality of evidence to recommend the use of vibrotactile PT in patients with POSA to reduce the AHI and %T_supine is moderate, while evidence for a reduction in ESS is low.

DISCUSSION

The main findings of this systematic review and meta-analysis showed that vibrotactile PT is effective in reducing AHI and time spent in the supine position in patients with POSA. Pooled data also showed a reduction in daytime sleepiness and a disease-specific quality of life score (FOSQ), but these secondary findings did not reach a clinically meaningful difference. Additionally, there were minimal improvements in sleep efficiency and arousal index. Therefore, according to the Grading Recommendations, Assessment, Development and Evaluations (GRADE) approach, the quality of evidence to recommend the use of vibrotactile PT in patients with POSA to reduce the AHI and %T_supine is moderate, while evidence for a reduction in ESS is low.

Limitations

In the current review, there are several points to consider in the interpretation of the results. The first is the heterogeneity in the definitions of POSA, the PT devices used, as well as the differences between the control arms of the included clinical trials. Two studies used inactive vibrotactile PT treatment, one study used no treatment, one study used MAD, one study used TBT and two studies used APAP. The remaining two studies used multiple comparators or combined therapy as control. Therefore, pooling of the results was only possible with vibrotactile PT at follow-up, compared with baseline. However, with this approach, we were able to include the large number of studies reported on.

In most of the studies, the follow-up times were short (3 months or less), and therefore, were not able to investigate the

Table 3 Grading Recommendations, Assessment, Development and Evaluations (GRADE) quality of evidence assessment for the most important outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>No of participants (studies)</th>
<th>GRADE assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHI</td>
<td>700 participants (17 studies)</td>
<td>⊕⊕⊕ Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▶ Reduced by one for risk of publication bias</td>
</tr>
<tr>
<td>Percentage time supine</td>
<td>700 participants (17 studies)</td>
<td>⊕⊕⊕ Moderate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▶ Reduced by one for risk of publication bias</td>
</tr>
<tr>
<td>ESS</td>
<td>411 participants (9 studies)</td>
<td>⊕⊕Ο Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▶ Reduced by one for risk of publication bias</td>
</tr>
<tr>
<td></td>
<td></td>
<td>◼ Reduced by one for imprecision</td>
</tr>
</tbody>
</table>

AHI, Apnoea Hypopnoea Index; ESS, Epworth Sleepiness Scale.
long-term effect of the vibrotactile PT. This highlights the need for large blinded RCTs powered to look at changes in patient-centred outcomes over longer follow-up periods.

In addition, adherence rates were defined differently between different studies, and therefore, data were unable to be pooled. Future trials should also report the adherence with therapy, as this is likely to be a key determinant of therapy efficacy. When comparing to other treatment options such as CPAP and surgical approaches, the combination of adherence data and reduction in AHI on therapy should be considered.53

A further limitation was that our review excluded non-English language studies.

CONCLUSION

There is evidence that vibrotactile PT reduces the time spent in the supine position and AHI in patients with POSA, however, the effect on self-reported daytime sleepiness does not reach clinical significance and evidence on the longer-term effect of PT is lacking. Other, more targeted outcomes for OSA, such as vitality, have limited data and follow-up periods were often short. Therefore, well-designed clinical trials are required to fill these evidence gaps.

Twitter Abdullah S ALQami @alqarni_sleep and Chris D Turnbull @rchdristembull

Acknowledgements

This paper is based on ASA’s thesis, submitted for a degree of Doctor of Philosophy (PhD) at Imperial College London. The Thesis has been uploaded to Imperial College’s digital repository.

Contributors

ASA developed the project, designed the study protocol and wrote the search strategy, plus the first protocol ASA and JKL extracted the data. ASA planned and performed statistical analysis. ASA wrote the first manuscript draft. JKL, MJM and CDT provided critical insights and supervision. All authors contributed to and approved the final written manuscript. JKL is the guarantor and accepts full responsibility for the work.

Funding

ASA was funded by a scholarship from Imam Abdulrahman Bin Faisal University in Saudi Arabia. JKL, MJM and CDT disclose research funding from the National Institute for Health Research (NIHR) under its Research for Patient Benefit (RPB) Programme (Grant Reference Number PB-PG-0817-20049) for the POSA Trial (NCT04153240). CDT acknowledges funding as an Academic Clinical Lecturer by the National Institute for Health Research (NIHR). MJM and CDT disclose research funding from the National Institute for Health Research (NIHR) under its Research for Patient Benefit (RPB) Programme (Grant Reference Number PB-PG-0817-20049) for the POSA Trial (NCT04152440).

Disclaimer

The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care.

Competing interests

JLK, MJM and CDT disclose research funding from the National Institute for Health Research (NIHR) under its Research for Patient Benefit (RPB) Programme (Grant Reference Number PB-PG-0817-20049) for the POSA Trial (NCT04152440).

Patient consent for publication

Not applicable.

Provenance and peer review

Not commissioned; externally peer reviewed.

Data availability statement

Data are available on reasonable request.

Supplemental material

This content has been supplied by the author(s). It has not been vetted by BMI Publishing Group Limited (BMI) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMI. BMI disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMI does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs

Abdullah S ALQami http://orcid.org/0000-0001-6679-3152

Chris D Turnbull http://orcid.org/0000-0001-8942-5424

REFERENCES

