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Rationale for candidate gene and SNP selection 

Although the precise reasons for this interindividual variability have not yet been discovered, 

several pharmacokinetic processes of pemetrexed and its mechanism of action are already 

well known (Figure 1). Pemetrexed is primarily eliminated via the kidneys, and hence 

pemetrexed clearance and total exposure are associated with renal (dys)function [1,2]. Uptake 

into the cells is regulated by different membrane transporters, i.e. proton-coupled folate 

transporter (PCFT), folate receptors a and b, and reduced folate carrier (RFC), while ATP-

binding cassette transporters (ABC) of the multidrug resistance protein family ABCC1-5 are 

primarily responsible for the cellular efflux of (anti-)folates [3,4]. Intracellularly, pemetrexed 

undergoes rapid polyglutamation facilitated by folylpoly-g-glutamate synthetase (FPGS) and 

g-glutamyl hydrolase (GGH) is involved in the reverse process of deglutamation [3]. The 

formation of polyglutamates is thought to be a major determinant of its antitumor activity as 

polyglutamates are no substrates for most efflux ABCC transporters, except ABCC5, and 

therefore are longer retained intracellularly. Moreover, polyglutamates have a stronger 

affinity for the target enzymes of pemetrexed [5]. Thymidylate synthetase (TYMS) is the 

main target enzyme of pemetrexed and results in disturbed de novo thymidine production 

needed for DNA synthesis. By binding to its secondary target enzymes glycinamide 

ribunecleotide formyltransferase (GARFT) and 5-aminoimadizaole-4-carboxamide 

ribonucleotide formyltransferase (ATIC) de novo purine synthesis is also inhibited, while 

binding to dihydrofolate reductase (DHFR) results in a diminished active tetrahydrofolate 

pool needed for purine and thymidine synthesis. ATIC may also play a role in cell growth 

and proliferation by inhibition of the mammalian target of rapamycin (mTOR) pathway [6]. 

Knockdown of ATIC by pemetrexed leads to an endogenous increase in 5-aminoimidazole-4-
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carboxamide-1-𝛽-D-ribonucleotide (AICAR), which activates AMP-activated protein kinase 

(AMPK) and inhibits its downstream pathway mTOR, and thereby ultimately leads to a 

decrease in cell proliferation and an increase in cell apoptosis [7,8]. 

 Another potential determinant of pemetrexed activity is 5,10-methylenetetrahydrofolate 

reductase (MTHFR), which is an important regulator of the folic acid pathway [9]. It is both 

involved in DNA synthesis and methylation. Different levels of activity of all these different 

proteins, for example due to genetic variations, may lead to altered exposure and sensitivity 

to pemetrexed. In our study, we aimed to investigate whether polymorphisms of genes 

(Figure 1), which encode for or regulate these enzymes, are associated with clinical 

effectiveness and toxicity of pemetrexed in a large cohort of patients exposed to this drug. 

 

Based on its role in the working mechanism of pemetrexed, earlier findings with regard to the 

relation of polymorphisms and clinical outcomes and a minor allele frequency of >10% in the 

European subpopulation of the 1000 Genome project using LDpop [10], we selected SNPs of 

the above mentioned genes.  

The polymorphism *746C>T of SLC19A1, encoding the major entrance transporter RFC, has 

been associated with progression-free and overall survival (PFS/OS) in a small group of 

NSCLC patients treated with the combination pemetrexed-bevacizumab and in a mixed 

NSCLC/mesothelioma cohort [11,12]. This polymorphism is located in the 3’-UTR region of 

SLC19A1. The SNP ABCC2 -24C>T, has been reported to lower the expression of the protein 

[13], which theoretically leads to intracellular accumulation of pemetrexed (polyglutamates) 

and might explain the better objective tumor response in patients with the -24CC 

polymorphism and the increased gastrointestinal toxicity observed with the TT 

polymorphism in patients treated with pemetrexed [14,15]. In patients with acute 

lymphocytic leukemia receiving treatment with methotrexate, closely resembling the 
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mechanism of cell transport of pemetrexed, the wildtype variant of SNP ABCC4 75-

23516T>C was associated with a higher risk of mucositis [16]. The polymorphism is located 

in intron 1 of the ABCC4 gene, its role has not been clarified yet. With regard to the 

metabolizing enzymes, there is evidence that alterations in FPGS and GGH function may 

alter the cellular retentions of (anti)folates [17,18]. GGH intronic polymorphism 

109+1307C>T was associated with worse median overall survival and less hematological 

toxicity [11]. The wildtype variant of FPGS 2572C>T correlated with a higher protein 

expression of FPGS and higher response rate [19]. TYMS mRNA expression is regulated by 

different polymorphisms, among others various number of 28-base-pair tandem repeats 

(VNRT) in 5’ UTR enhancer region of the TYMS gene, and a SNP -86G>C inside this second 

tandem repeat [20]. Patients with a low expression genotype had a more favorable clinical 

response to pemetrexed, while they experienced more hematological toxicities [21–25]. The 

T missense variant of the MTHFR 677C>T has been associated with reduced enzyme 

activity, and thus the carrying TT genotype would be expected to lead to a favorable clinical 

response. Reports on MTHFR 677TT genotype showed contradictory results with regard to 

OS/PFS [12,26,27]. The DHFR variant c.-473T>C is located in the 5’-promotor region of the 

gene and wildtype T allele forms part of a promoter region haplotype that is reported to 

upregulate DHFR expression. Carrying the TT genotype was associated with increased risk 

of adverse events [12]. With regard to the ATIC polymorphism c.815-102T>C, its relation 

with treatment effectiveness outcomes are contradictory. Woo et al. found that patients with 

the CC genotype had a better tumor response and overall survival, while Zhang et al. 

observed a worse tumor response in patients with the CC genotype without having performed 

survival analysis [14,28]. The effect of the intronic ATIC SNP on protein expression or 

functionality is not clear. 
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Materials and methods 

Standard of care platinum-combined pemetrexed chemotherapy 

Patients received platinum-combined pemetrexed chemotherapy or pemetrexed monotherapy 

treatment as first-line or second-line treatment per standard of care for a maximum of 4 

cycles. Pemetrexed was dosed at 500 mg/m2 and cisplatin at 75 mg/m2.  Carboplatin dosage 

was calculated using the Calvert formula with a target AUC of 5 or 6. Dose adjustments (i.e. 

reductions) at the start of subsequent courses of therapy were based on nadir counts 

(neutrophils, platelets) or maximal non-hematologic toxicity from the preceding cycle of 

therapy. Patients were recommended to continue with pemetrexed maintenance therapy if 

they had no progressive disease, no intolerable toxicities and underwent no sequential 

radiotherapy or surgery. 

 

DNA isolation and genotyping 

Four hundred microliters of whole-blood specimens collected in EDTA tubes were extracted 

on the MAGNAPure Compact (Roche Diagnostics GmbH, Germany) using the Total Nucleic 

Acid Isolation Kit I (Roche Diagnostics GmbH, Germany) and a final elution volume of 200 

µl. 

 

Taqman genotyping 

The genotyping of SLC19A1 746C>T (rs1015298), GGH 6699G>A (rs3780126), FPGS 

2572C>T (rs1544105), ABCC2 -24C>T (rs717620), ABCC4 2168T>C (rs7317112), ATIC 

815-102T>C (rs12995526), MTHFR 677C>T (rs1801133), TYMS VNTR polymorphism 

(rs45445694) and c.-86G>C (rs183205964) was performed using TaqMan 5’-nuclease 

analyses (ThermoFisher, Carlsbad, CA, USA). The assay IDs are listed in Table 1. Each 

assay consisted of two allele-specific minor groove binding (MGB) probes, labeled with the 
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fluorescent dyes VIC and FAM. Polymerase chain reactions (PCRs) were performed in a 

reaction volume of 10 µl, containing assay-specific primers, allele-specific Taqman MGB 

probes (Applied Biosystems), Abgene Absolute QPCR ROx Mix (Thermo Scientific, Life 

Technologies Europe BV, Bleiswijk, The Netherlands) and genomic DNA (20 ng). 

 

Statistical analyses 

The distribution of genotypes was tested for Hardy-Weinberg equilibrium (HWE) using the 

chi-squared test. Since ABCC4 75-23516T>C was not in HWE in our cohort (Table 1), this 

SNP was excluded from all further analyses.  

With regard to toxicity endpoints, AEs were selected if they occurred in >10% of the patients. 

If an adverse event was already present in an equal or higher degree before start of treatment, 

it was not considered as an event. Adverse events were considered treatment-related if 

defined as possibly, probably or definitely related by the investigator. For both clinical 

effectiveness and toxicity end points, multivariable analysis was only performed in case of 

approximately 10 or more events per assessed variable in order to avoid bias of the regression 

coefficients. The selected polymorphisms were fitted and the most appropriate model was 

selected from four models: dominant, recessive, additive model and a multiplicative model 

[29].  

With a sample size of patients treated with first-line pemetrexed n=147 and event rate (death) 

of 92% observed in our study, we were able to detect a hazard ratio of ≥ 2.0 (or ≤ 0.5) at a 

two-sided significance level of 0.025 (𝛼=0.05) between two genotype groups with a power of 

0.8 or higher, if the proportion of the dominant or recessive genotype group was ≥ 0.14. This 

is the case for all SNPs, except for the recessive genotypes of MTHFR (MAF 31%, n=12 

(8.2%)), ABCC2 (MAF 20%, n=5 (3.4%)), DHFR (MAF 26%, n=13 (8.8%)) and the high-

expression genotype vs other of TYMS (MAF 25%, high-expression genotype n=12 (8.2%)). 
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For these genotypes the power of detection of HR ≥ 2.0 (or ≤ 0.5) was 0.35 (ABCC2), 0.6 

(MTHFR and TYMS) and 0.64 (DHFR). 

 Statistical analyses were performed with the use of SPSS, version 24.0 (IBM Corporation, 

Armonk, NY). 

 

Population pharmacokinetic model 

The PK data were described by a two-compartment model (population estimate (% standard 

error of the estimate) in terms of pemetrexed clearance CL (4.58L/h (3.1%)), central volume 

of distribution Vc (15.9L (3.3%)), peripheral volume of distribution Vp (21.6L (5.0%)) and 

intercompartmental clearance (Q; 0.05L/h (4.7%)) [30]. Despite a reduction of approximately 

20% in between-patient variability of pemetrexed clearance after inclusion of covariable 

estimated glomerular filtration rate (eGFR), still 16.7% (coefficient of variation) of the 

between-patient variability remained unexplained. 

Genotypes encoding enzymes involved in the cell transport and polyglutamation of 

pemetrexed (SLC19A1, GGH, FPGS, ABCC2) were added to the previously developed 

population PK model and were included as dichotomous or ordinal covariables on 

pemetrexed clearance using the following equation:  

𝐶𝐿 = 	𝜃( 	 ∗ 	
*+,-

.*/012

34
∗ (𝜃6)

89 , 

Where pg was scored ‘1’ for patients of whom the genotype of interest was present and ‘0’ 

for patients of whom the genotype was absent if the genotype was considered as a 

dichotomous variable (recessive or dominant genotype). If the genotype was included 

ordinally (additive genotype), pg was scored ‘0’ for patients with the homozygous major 

allele genotype (wild-type), ‘1’ for heterozygous patients and ‘2’ for patients with the 

homozygous minor allele genotype (variant). qx is the typical parameter value for the 

homozygous major allele population, qy is the covariable effect size estimate of eGFR and qz 
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is the covariable effect size estimate of the SNP. First, the potential association of all SNPs 

was univariably tested. The threshold of this step was set at p < 0.01 (likelihood ratio test, ∆ 

objective function value (OFV) > 6.64, degrees of freedom =1 or ∆OFV > 9.21, degrees of 

freedom =2). In the next step, all potentially related covariables were included in the full 

model. During a backward elimination procedure, covariables were removed one at a time 

from the full model again if the fit of the model did not decrease significantly (p < 0.005) 

tested using the likelihood ratio test (∆OFV > 7.88, df =1 or (∆OFV > 10.6, df =2). 
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