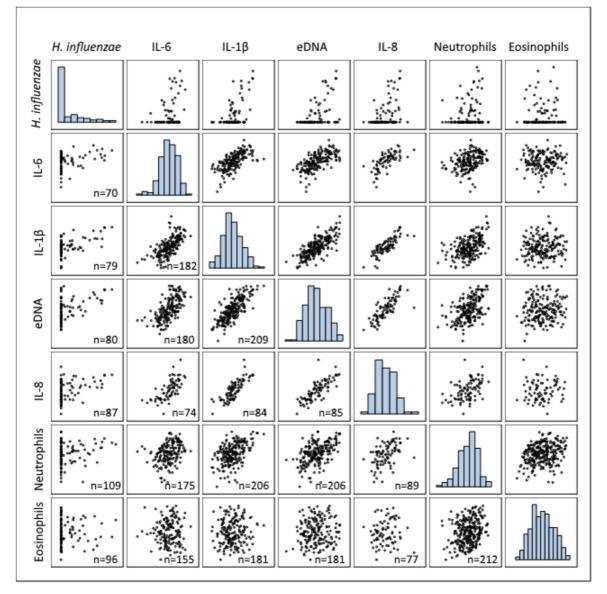
Add-on Azithromycin reduces sputum cytokines in non-eosinophilic asthma: an AMAZES sub-

study

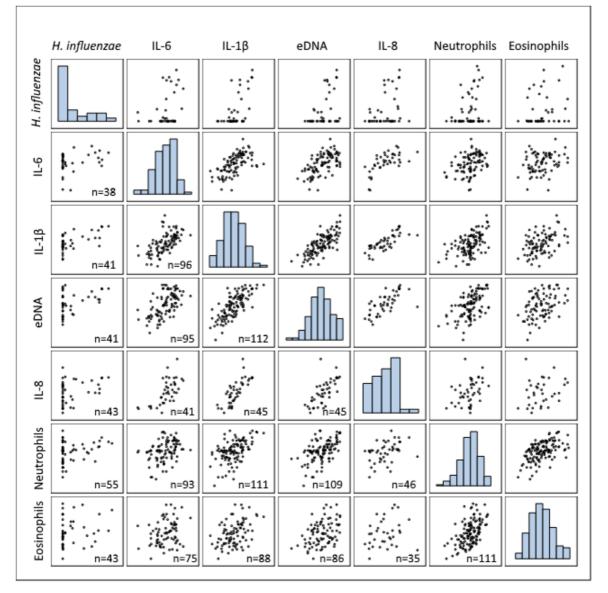
ONLINE SUPPLEMENT

SUPPLEMENTARY METHODS

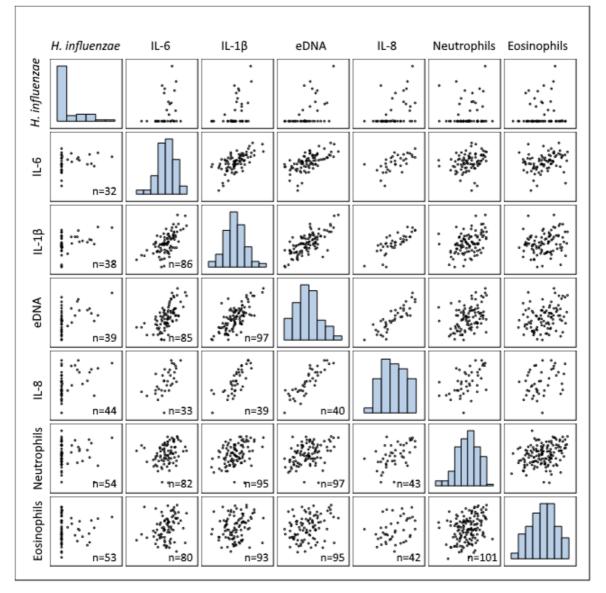
Sub-study design


This was a pre-specified sub-study from the initial AMAZES trial protocol (Section 11.2, Appendix I) https://www.severeasthma.org.au/wp-content/uploads/2017/04/AMAZES-Protocol-V15-25.02.14-final.pdf

Inflammatory marker assessment


Sputum IL-6, IL-8 and IL-1 β levels were determined by ELISA according to the manufacturer's instructions (R&D Systems; Minneapolis, MS, USA). The validity of IL-6, IL-8 and IL-1 β in sputum supernatant has been reported previously.¹⁻³ The limits of detection of each assay were as following; sputum IL-6: 168.84 pg/ml; IL-8: 31.3 pg/ml; IL-1 β : 35.19 pg/ml. IL-6 and IL-1 β were assessed in all available sputum supernatant pairs. The abundance of eDNA in the cell-free sputum supernatant was quantitated using the Quant-iT PicoGreen dsDNA Assay Kit (P7589, Invitrogen, Carlsbad, CA) as per manufacturer's instructions.⁴ This assay selectively detects double-stranded DNA, which was quantitated in 10 µL of sputum supernatant against a DNA standard curve of 0–200 ng/µL.

Haemophilus influenzae detection in raw sputum


The total DNA was extracted from frozen raw sputum aliquots using a combination of physical, enzymatic, and heat-based cell lysis method that was followed by phenol-chloroform extraction and DNA recovery using EZ-10 Spin columns (Bio Basic, Inc.) as previously described.⁵ *H. influenzae* abundance was measured using a previously published, validated, species-specific qPCR assay with a standard curve of *H. influenzae* strain NTCC8468 of known quantities.^{6,7} Briefly, 1 µL of DNA extract, 0.25 µM of primers (F: ATTAAATGTTGCATCAACGC, R: GACTTTTGCCCACGCAC), 0.2 µM of target probe (FAM-ACGRTTTTACCATAGTTGCACTTTCTC-BHQ1), 17.5 µL of 2X KAPA Probe Fast qPCR Master Mix (KAPA Biosystems Inc., Wilmington, USA) and the appropriate volume of water was added to a 35 µL total reaction volume. Quantitative real-time PCR were performed on three technical replicates, at 10 µL reaction volume per replicate, on a QuantStudio 6 and 7 Flex Real-Time PCR system (Applied Biosystems, Carlsbad, USA). Cycle conditions were 50 cycles of 95 °C for 10 s and 63 °C for 30 s. Serial dilutions of a known concentration of *H. influenzae* strain NTCC8468 was run with every PCR reaction and a copy number per mL of sputum was calculated by comparing sample Ct to the standard curve.

Supplementary Figure 1: Scatter plot matrix of inflammatory mediators and *Haemophilus influenzae* in all participants. X-axis from left to right and y-axis from top to bottom display log_{10} values of *H. influenzae* (copies/mL), IL-6 (pg/mL), IL-1 β (pg/mL), extracellular DNA (ng/mL), IL-8 (pg/mL), neutrophils (count × 10⁴/mL), and eosinophils (count × 10⁴/mL)

Supplementary Figure 2: Scatter plot matrix of inflammatory mediators and *Haemophilus influenzae* in non-eosinophilic asthma. X-axis from left to right and y-axis from top to bottom display \log_{10} values of *H. influenzae* (copies/mL), IL-6 (pg/mL), IL-1β (pg/mL), extracellular DNA (ng/mL), IL-8 (pg/mL), neutrophils (count × 10⁴/mL), and eosinophils (count × 10⁴/mL)

Supplementary Figure 3: Scatter plot matrix of inflammatory mediators and *Haemophilus influenzae* in eosinophilic asthma. X-axis from left to right and y-axis from top to bottom display log_{10} values of *H. influenzae* (copies/mL), IL-6 (pg/mL), IL-1 β (pg/mL), extracellular DNA (ng/mL), IL-8 (pg/mL), neutrophils (count × 10⁴/mL), and eosinophils (count × 10⁴/mL)

	All			Non-eosinophilic			Eosinophilic		
	Observations	Estimate (95% CI)	p- value	Observations	Estimate (95% CI)	p-value	Observations	Estimate (95% CI)	p-value
log ₁₀ (H.influenzae)	AZM: 23 Placebo: 30	-0.309)	0.007	AZM: 11 Placebo: 14	-2.142 (-3.352 to -0.932)	0.001	AZM: 12 Placebo: 16	0.017 (-0.940 to 0.975)	0.971
log_{10} (IL-6)	F lacebo. 80	-0.234 (-0.416 to -0.052)		r lacebo. 41	-0.235 (-0.446 to -0.023)	0.029	AZM: 39 Placebo: 43	-0.292 (-0.57 to -0.015)	0.039
log_{10} (IL-1 β)	AZM: 108 Placebo: 100	-0.268 (-0.423 to -0.114)	0.001	AZM: 57 Placebo: 47	-0.393 (-0.627 to -0.158)	0.001	AZM: 44 Placebo: 50	-0.130 (-0.341 to 0.081)	0.227
$log_{10}(eDNA)$	AZM: 103 Placebo: 98	-0.139 (-0.229 to -0.049)	0.002	AZM: 54 Placebo: 45	-0.215 (-0.351 to -0.080)	0.002	AZM: 42 Placebo: 50	-0.075 (-0.198 to 0.048)	0.234
log_{10} (Neutrophils)	AZM: 92 Placebo: 98	-0.175 (-0.431 to 0.082)	0.183	AZM: 52 Placebo: 47	-0.453 (-0.909 to 0.004)	0.052	AZM: 40 Placebo: 51	0.042 (-0.188 to 0.273)	0.719
log ₁₀ (Eosinophils)	AZM: 92 Placebo: 98	-0.024 (-0.507 to 0.459)	0.922	AZM: 52 Placebo: 47	-0.267 (-1.020 to 0.486)	0.487	AZM: 40 Placebo: 51	0.410 (-0.149 to 0.969)	0.151

Supplementary Table 1. Azithromycin (AZM) effects on inflammatory mediators and *Haemophilus influenzae* in all, eosinophilic and non-eosinophilic asthma. Estimated difference (95% CI) between AZM and placebo at week 48 is shown.

* All models adjust for the baseline level. Negative values of the difference indicate lower post treatment levels in the AZM group. Eosinophilic asthma was defined as sputum eosinophils \geq 3%.

References

- 1. Gao P, Gibson PG, Baines KJ, et al. Anti-inflammatory deficiencies in neutrophilic asthma: reduced galectin-3 and IL-1RA/IL-1β. *Respiratory research*. 2015;16(1):5.
- 2. Fu JJ, McDonald VM, Gibson PG, Simpson JL. Systemic Inflammation in Older Adults With Asthma-COPD Overlap Syndrome. *Allergy Asthma Immunol Res.* 2014;6(4):316-324.
- 3. Neveu WA, Allard JL, Raymond DM, et al. Elevation of IL-6 in the allergic asthmatic airway is independent of inflammation but associates with loss of central airway function. *Respiratory research*. 2010;11:28.
- 4. Wright TK, Gibson PG, Simpson JL, McDonald VM, Wood LG, Baines KJ. Neutrophil extracellular traps are associated with inflammation in chronic airway disease. *Respirology*. 2016;21(3):467-475.
- 5. Taylor SL, Leong LEX, Choo JM, et al. Inflammatory phenotypes in patients with severe asthma are associated with distinct airway microbiology. *Journal of Allergy and Clinical Immunology*. 2018;141(1):94-103.e115.
- 6. Taylor SL, Leong LEX, Mobegi FM, et al. Long-Term Azithromycin Reduces Haemophilus influenzae and Increases Antibiotic Resistance in Severe Asthma. *Am J Respir Crit Care Med.* 2019.
- 7. Reddington K, Schwenk S, Tuite N, et al. Comparison of Established Diagnostic Methodologies and a Novel Bacterial smpB Real-Time PCR Assay for Specific Detection of Haemophilus influenzae Isolates Associated with Respiratory Tract Infections. *Journal of clinical microbiology*. 2015;53(9):2854-2860.