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Abstract
The past 5 years have seen an explosion of interest in the 
use of artificial intelligence (AI) and machine learning 
techniques in medicine. This has been driven by the 
development of deep neural networks (DNNs)—complex 
networks residing in silico but loosely modelled on the 
human brain—that can process complex input data such 
as a chest radiograph image and output a classification 
such as ’normal’ or ’abnormal’. DNNs are ’trained’ using 
large banks of images or other input data that have 
been assigned the correct labels. DNNs have shown the 
potential to equal or even surpass the accuracy of human 
experts in pattern recognition tasks such as interpreting 
medical images or biosignals. Within respiratory 
medicine, the main applications of AI and machine 
learning thus far have been the interpretation of thoracic 
imaging, lung pathology slides and physiological data 
such as pulmonary function tests. This article surveys 
progress in this area over the past 5 years, as well as 
highlighting the current limitations of AI and machine 
learning and the potential for future developments.

Introduction
‘Artificial intelligence (AI)’ may be defined as ‘the 
theory and development of computer systems able 
to perform tasks normally requiring human intel-
ligence, such as visual perception, speech recog-
nition, decision-making, and translation between 
languages’.1 Machine learning is a subfield of AI in 
which statistical models are used to learn patterns 
from data in order to accomplish a specific task. 
Machine learning techniques range from simple 
linear models such as logistic regression and naïve 
Bayes classifiers to complex neural network models 
with many thousands of parameters.

The explosion of interest in medical applications 
of AI during the past 5 years may be attributed to 
the confluence of two key factors:
1.	 Deep neural networks (DNNs)

Artificial neural networks (ANNs) are loosely 
modelled on the human brain and consist of 
multiple layers of ‘neurons’ that successive-
ly process input data until the output layer is 
reached. DNNs are a recently developed variant 
of ANNs that have a large number of interme-
diate layers (often greater than 10) and process 
input data in a hierarchical manner, with the 
first few layers responding to simple low-level 
features (such as straight lines) and successive 
layers responding to more abstract high-level 
features (such as the shape of specific objects).2 
DNNs are typically used to classify the input 
data into a number of categories. For instance, 
a chest radiograph image may be classified as 

‘normal’ or ‘abnormal’. DNNs have been ac-
companied by a paradigm shift in AI. In the 
early years of AI research, the goal was to en-
code the knowledge of human experts into rule-
based ‘expert systems’ that would be explicitly 
programmed to look for certain hand-crafted 
features in the data. However, DNNs are de-
veloped using large training datasets and learn 
in an autonomous manner the features which 
most discriminate between categories. DNNs 
therefore have the potential to surpass human 
experts in classification tasks. Although their 
accuracy is impressive, a drawback of DNNs is 
their lack of interpretability. The features that 
are used to distinguish between data categories 
are not readily translated into verbal or visual 
‘rules’ that a human can understand.

2.	 Big data and faster computation
The success of DNNs has been dependent on the 
availability of large training datasets that have 
been correctly labelled with the categories to be 
distinguished, as well as faster computation to 
train the DNNs within a reasonable timeframe. 
For example, a system that can distinguish 
handwritten numerals requires thousands of 
examples of each numeral to achieve reasona-
ble accuracy. The widespread use of Electronic 
Health Records (EHR) and Picture Archiving 
and Communication Systems has resulted in the 
availability of large training datasets for health-
care applications, subject to appropriate ethical 
and information governance safeguards.

DNNs have shown equivalent diagnostic accuracy 
to expert dermatologists at distinguishing between 
the macroscopic appearance of malignant and 
benign skin lesions3 and to expert pathologists at 
detecting breast cancer nodal metastases on histo-
logical slides.4 DNNs have been successfully applied 
to retinal images for the detection of diabetic reti-
nopathy and other retinal pathologies,5–8 CT 
images for the detection of acute intracranial 
events,9 ECGs for the diagnosis of arrhythmias10 
and cardiac contractile dysfunction,11 identification 
of the facial phenotypes of genetic disorders12 and 
interpretation of screening mammography.13 Signif-
icant progress has also been made in the analysis of 
EHRs for medical diagnosis14 and predicting future 
events such as acute kidney injury.15 DNNs have 
shown an ability to detect subtle features that are 
undetectable by human observers even in hindsight. 
For instance, Attia et al16 developed a DNN that 
accurately predicted the presence of atrial fibrilla-
tion occurring previously or in the near future using 
ECGs recorded during sinus rhythm.

This review will focus on the advances that have 
been made in AI and machine learning as applied 

    1Gonem S, et al. Thorax 2020;0:1–7. doi:10.1136/thoraxjnl-2020-214556

 on S
eptem

ber 24, 2023 by guest. P
rotected by copyright.

http://thorax.bm
j.com

/
T

horax: first published as 10.1136/thoraxjnl-2020-214556 on 14 M
ay 2020. D

ow
nloaded from

 

http://orcid.org/0000-0002-6080-2246
http://crossmark.crossref.org/dialog/?doi=10.1136/thoraxjnl-2020-214556&domain=pdf&date_stamp=2020-05-14
https://www.brit-thoracic.org.uk
http://thorax.bmj.com
http://thorax.bmj.com/


State of the art review

Figure 1  Published articles on artificial intelligence and machine 
learning in respiratory medicine shown as raw numbers (panel A) and as 
a percentage of all articles on respiratory medicine (panel B) from 2000 
to 2019. Panel A shows the number of retrieved articles on the PubMed 
database published from 2000 to 2019 using the search terms specified 
for this review (artificial intelligence related term and respiratory-related 
term). Panel B shows this number expressed as a percentage of all 
articles retrieved using just the respiratory-related search terms.

to respiratory medicine in the past 5 years. The inputs that have 
been subjected to machine learning techniques may be broadly 
categorised into:
i.	 Thoracic imaging.
ii.	 Histopathology or cytology.
iii.	 Physiological measurements and biosignals.
Search strategy:

The following search was performed on the PubMed database 
on 19 March 2020:

(‘artificial intelligence’[All Fields] OR ‘machine learning’[All 
Fields] OR ‘deep learning’[All Fields] OR ‘neural network’[All 
Fields]) AND (‘chest’[All Fields] OR ‘lung’[All Fields] OR ‘pulmo-
nary’[All Fields] OR ‘respiratory’[All Fields] OR ‘thorax’[All 
Fields] OR ‘thoracic’[All Fields] OR ‘pneumonia’[All Fields] 
OR ‘pneumonitis’[All Fields] OR ‘bronchiectasis’[All Fields] 
OR ‘bronchiolitis’[All Fields] OR ‘cystic fibrosis’[All Fields] OR 
‘tuberculosis’[All Fields] OR ‘mycobacteria’[All Fields] OR ‘asth-
ma’[All Fields] OR ‘copd’[All Fields] OR ‘pleural’[All Fields] 
OR ‘sarcoidosis’[All Fields] OR ‘sleep’[All Fields] OR ‘ventila-
tion’[All Fields)].

A total of 4610 results were returned. All abstracts were 
reviewed by the first author (SG), and full-text articles were 
retrieved for papers that described a clinically relevant advance 
in the field. These papers were reviewed in detail, and examples 
representing the state of the art in each subfield were selected for 
inclusion in this narrative review. It was observed that there has 

been an exponential increase in published papers on this topic 
starting from 2016 (figure 1).

Thoracic imaging
The application of DNNs to chest radiographs and CT scans 
has resulted in a step change in diagnostic accuracy compared 
with qualitative semantic features such as tumour spiculation 
and quantitative features such as shape and texture derived 
using image analysis software (often referred to as radiomics). 
The advantage of DNNs is that they derive features directly 
from the data, resulting in greater accuracy than hand-crafted 
qualitative or quantitative analyses but with the disadvan-
tage of reduced interpretability. However, some progress has 
been made towards correlating ‘deep features’ derived from 
DNNs with semantic features that are detectable by human 
radiologists.17

A number of algorithms have been developed for auto-
mated reporting or triage of plain chest radiographs, in many 
cases exceeding the accuracy of expert thoracic radiologists. 
Annarumma et al18 trained a DNN to triage chest radiographs 
as ‘normal’, ‘non-urgent’, ‘urgent’ and ‘critical’ using a training 
dataset of 329 698 images. The AI system detected normal radio-
graphs with a sensitivity of 71%, specificity of 95% and a posi-
tive predictive value of 73% in the test dataset. In a simulated 
radiology reporting pipeline in which the AI was used to priori-
tise urgent and critical radiographs for reporting by a radiologist, 
there was an approximately fourfold reduction in the delay to 
report radiographs with critical findings and a twofold reduc-
tion in the delay to report urgent findings. A similar chest radio-
graph triage system using a binary classification of ‘normal’ or 
‘abnormal’ was developed by Yates et al,19 with a final model 
accuracy of 94.6% in the test dataset. These findings suggest a 
potentially important role for AI in prioritising cases for review 
by a radiologist, in order to expedite the reporting of cases with 
critical abnormalities. This could be particularly relevant in 
resource-poor settings in which there is a shortage of trained 
radiologists. AI assessment of chest imaging may also have prog-
nostic significance: Lu et al20 developed a DNN that accurately 
predicted all-cause mortality over a follow-up period of 12 years 
based on a single plain chest radiograph, even after adjusting 
for radiologists’ diagnostic findings and standard risk factors for 
mortality.

DNNs have been trained to recognise specific pathologies 
on chest radiographs including tuberculosis,21–24 malignant 
pulmonary nodules,25 congestive cardiac failure26 and pneumo-
thorax.27 Hwang et al28 developed a DNN that could recognise 
lung cancer, tuberculosis, pneumonia and pneumothorax on 
chest radiographs as well as providing visual localisation of the 
abnormality. In a head-to-head comparison using the same test 
dataset, the DNN achieved an area under the receiver operating 
curve (AUC; a measure of the accuracy of a diagnostic test) of 
0.983, exceeding that of thoracic radiologists (0.932), general 
radiologists (0.896) and non-radiology physicians (0.614). The 
same research group subsequently tested this DNN algorithm 
in an emergency department setting and found that it improved 
the sensitivity of radiology residents in the detection of clini-
cally significant abnormalities when used as a second reader.29 
However, the DNN was not trained to interpret radiographs 
with multiple pathologies, nor to interpret images in the context 
of background clinical information. Therefore, while current 
DNNs cannot replace radiologist reporting of chest radiographs, 
they may act as a competent second reader to reduce percep-
tual errors. Prospective studies incorporating DNNs as a second 
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reader in routine clinical practice are warranted to determine 
whether they can reduce the rate of reporting errors.

Evidence that lung cancer screening can reduce mortality is 
steadily accumulating, and a recent European Union position 
statement has concluded that implementation of low-dose CT 
screening should start throughout Europe as soon as possible.30 
An important limiting factor in this implementation is the avail-
ability of radiologists to report the large volume of screening CT 
scans. There has therefore been substantial interest in developing 
AI systems that can detect and accurately diagnose malignant 
pulmonary nodules on CT imaging.31–35 Ardila et al31 trained 
a DNN to predict the risk of lung cancer based on current and 
previous chest CT scans using cases from the National Lung 
Cancer Screening Trial. The DNN achieved an AUC of 0.944 for 
predicting biopsy-proven cancer in the test dataset. The accuracy 
of the DNN was higher than that of six board-certified radiolo-
gists when only the current CT scan was available and was equiv-
alent to the radiologists when both current and previous CT scans 
were available for review. Similarly, Baldwin et al developed a 
DNN to predict malignancy in incidentally detected pulmonary 
nodules measuring 5–15 mm and achieved an AUC of 0.896 in 
the test dataset, which was significantly higher than that of the 
Brock model currently recommended in UK guidelines.32 In 
order to improve the interpretability and clinical acceptability of 
DNN predictions, Shen et al33 merged deep learning techniques 
with more traditional semantic features such as nodule calcifica-
tion and margin definition. Incorporating semantic features into 
DNN predictions did not significantly affect model accuracy 
but may have improved interpretability of the model output. A 
number of investigators have taken a hybrid approach, in which 
radiomic features are entered into machine learning models in 
order to derive the best combination of features to optimise clas-
sification accuracy.34 35 Delzell et al34 measured 416 quantitative 
imaging biomarkers in CT scans of pulmonary nodules from 
200 patients and entered these radiomic features into a variety 
of machine learning models. The best performing models were 
elastic net and support vector machine, which achieved an AUC 
of 0.72 for distinguishing benign from malignant nodules.

Beyond lung cancer diagnosis, there is evidence that DNNs 
can be used to predict prognosis and tumour type based on CT 
images. Hosny et al36 trained a DNN to predict survival based 
on CT appearances in patients with non-small cell lung cancer 
undergoing surgery or radiotherapy. The DNN distinguished 
between early (<2 years) and late (≥2 years) mortality with 
an AUC of 0.71 and 0.70 in patients undergoing surgery and 
radiotherapy, respectively. Wang et al37 found that a DNN could 
predict epithelial growth factor receptor mutation status in 
patients with lung adenocarcinoma based on CT images, with an 
AUC of 0.81 in the validation dataset. The accuracy of the DNN 
significantly exceeded that of predictive models using clinical 
features alone, semantic features or radiomics features.

Machine learning techniques have also been used for the 
diagnosis of interstitial lung disease.38 39 Walsh et al38 trained 
a DNN using a total of 420 096 montages each consisting of 
four transverse CT images. These were derived from full high-
resolution CT scans of 210 patients with usual interstitial pneu-
monia (UIP), 392 with possible UIP and 327 whose scans were 
considered inconsistent with UIP. The reference standard for 
each CT scan was determined by an experienced thoracic radiol-
ogist with a specialist interest in interstitial lung disease. In a 
test set of 68 093 montages derived from 139 separate patients, 
the algorithm achieved an accuracy of 76.4%. A second test set 
consisted of 150 four-slice montages from CT scans that had 
been previously evaluated by 91 thoracic radiologists, with the 

reference standard being the majority opinion of the radiolo-
gists. The algorithm achieved an accuracy of 73.3% in this test 
set that was comparable with the median accuracy of the indi-
vidual radiologists (70.7%). Moreover, in a Cox regression anal-
ysis, an algorithm diagnosis of UIP was associated with a HR for 
mortality of 2.88, compared with a diagnosis of ‘not UIP’, with 
the equivalent HR for a majority radiologist opinion diagnosis 
of UIP being 2.74.

González et al40 trained a DNN using four-slice CT montages 
from 7983 smokers who took part in the COPDGene study and 
found that the algorithm could accurately diagnose COPD, with 
an AUC of 0.856. A subsequent study using the same dataset 
found that the staging of emphysema from ‘absent’ to ‘advanced 
destructive’ using a DNN was highly predictive of survival and 
lung function.41 DNNs have also been developed to diagnose 
and evaluate the burden of thrombus in acute pulmonary embo-
lism. The algorithm developed by Liu et al42 achieved an AUC 
of 0.926 for the diagnosis of pulmonary embolism, and the 
clot burden measured by the DNN correlated significantly with 
manual (Qanadli and Mastora) scores and with measures of right 
ventricular function.

Histopathology and cytology
Deep learning techniques have been successfully applied to digital 
histology images, particularly in the field of lung cancer. Coudray 
et al43 found that a DNN could distinguish between adenocarci-
noma and squamous cell carcinoma of the lung with comparable 
accuracy with expert pathologists (AUC of 0.97). This signifi-
cantly exceeded the performance of traditional image-processing 
techniques with hand-crafted features, which achieved an AUC 
of approximately 0.75 for the same task.44 Moreover, the DNN 
could also predict the presence or absence of six common gene 
mutations of therapeutic significance (STK11, EGFR, FAT1, 
SETBP1, KRAS and TP53) with AUC values ranging from 
0.73 to 0.86. Similarly, Sha et al45 trained a DNN to predict 
programmed death-ligand 1 status in non-small cell lung cancer 
based on morphological appearances on standard H&E stained 
tumour sections, with an AUC of 0.80. DNNs have also been 
trained to accurately differentiate between lung adenocarcinoma 
growth patterns (acinar, micropapillary, solid, lepidic and crib-
riform),46 47 as well as to detect lung cancer metastases in lymph 
node slides.48 Courtiol et al49 trained a DNN (MesoNet) to accu-
rately predict overall survival of patients with malignant meso-
thelioma based on whole slide digitised images. The predictions 
made by MesoNet cut across traditional histological boundaries 
(such as epithelioid, sarcomatoid and biphasic) and moreover 
identified the specific regions within the slides that most contrib-
uted to patient outcome prediction.

Kim et al50 used machine learning methods (support vector 
machines and penalised logistic regression) to develop classi-
fiers for interstitial lung diseases based on high-dimensional 
transcriptional data from surgical lung biopsies. In a subsequent 
prospective study, the investigators found that the molecular 
classifier they developed could accurately distinguish between 
UIP and non-UIP in less invasive transbronchial biopsy samples, 
suggesting that the technique could avoid the need for surgical 
biopsy in some cases.51

Xiong et al52 trained a DNN to recognise acid fast-stained 
Mycobacterium tuberculosis bacilli on digital cytology slides. 
The small size of the bacilli (20×4 pixels) and the loss of reso-
lution when scanning the digital images resulted in some tech-
nical challenges. Although good sensitivity of 98% was achieved 
following modifications to the algorithm, there were a number 
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of false positive results due to contaminant bacilli and slide arte-
facts, resulting in a specificity of 84%.

Physiological measurements and biosignals
Interpretation of pulmonary function tests including spirometry, 
body plethysmography and measurement of diffusing capacity 
has traditionally been considered an important aspect of the 
expertise of respiratory physicians. Topalovic et al53 developed 
a random forest machine learning model using 1430 historical 
cases that could accurately differentiate between eight categories 
of respiratory disease. In a head-to-head comparison using 50 
test cases, the model displayed an accuracy of 82% and outper-
formed 120 European pulmonologists by a wide margin.

Machine learning approaches have also been applied to the 
forced oscillation technique (FOT), which measures respiratory 
impedance non-invasively using sound waves, with minimal effort 
from the subject.54 Amaral et al55 applied a variety of machine 
learning models (including K nearest neighbour, decision trees, 
ANNs and support vector machines) to FOT measurements to 
detect COPD (AUC >0.95) to discriminate between different 
Global initiative for Obstructive Lung Disease stages of airflow 
obstruction56 and to identify early smoking-induced changes in 
healthy subjects,57 as well as to identify airflow obstruction in 
patients with asthma.58

Breath analysis offers excellent potential to phenotype respi-
ratory disorders because exhaled breath contains a mixture of 
gases and traces of many volatile organic compounds (VOCs) 
that emanate from the respiratory tract itself. Several techniques 
exist to measure VOCs in the breath, such as gas chromatog-
raphy–mass spectroscopy, electronic nose and chemical sensors, 
each of which require advanced pattern recognition methods 
to identify abnormal signatures in measured VOCs.59 Machine 
learning methods such as decision trees and support vector 
machines on VOC data have been used to discriminate COPD 
and healthy individuals60 and to detect lung cancer.61 Brinkman 
et al62 used an electronic nose to classify inflammatory asthma 
phenotypes using K-means and Ward clustering. These unsuper-
vised learning techniques do not rely on prelabelling but instead 
group the cases into novel categories or clusters based on simi-
larity of exhaled breath metabolites.

Computerised lung sound analysis involves discriminating 
between normal and adventitious lung sounds obtained during 
auscultation. Although machine learning has become a standard 
method to classify adventitious sounds, these sound events are 
intermittent and highly variable from one person to another 
presenting a challenge in generalising these algorithms to a 
general population.63 Machine learning approaches (including 
ANNs and support vector machines) have been applied to clas-
sify adventitious sounds associated with asthma,64 COPD65 and 
interstitial lung disease66 and to detect common respiratory 
disorders in children using cough sounds.67 Bardou et al68 found 
that DNNs outperformed traditional machine learning tech-
niques in the classification of lung sounds into seven categories 
(normal, coarse crackle, fine crackle, monophonic wheeze, poly-
phonic wheeze, squawk and stridor).

Analysis of biosignals using machine learning may permit a 
superior understanding of the dynamics of physiological regula-
tion in health and disease. Examples of biosignal monitoring in 
the respiratory sphere include polysomnography, which is used 
to diagnose obstructive sleep apnoea and other sleep disorders. 
Nikkonen et al69 developed an ANN that accurately determined 
the oxygen desaturation index (ODI) and apnoea–hypopnoea 
index (AHI) using only the oxygen saturation signal as input. 

The median absolute error was 0.78 events/hour for AHI and 
0.68 events/hour for ODI, using manual scoring of events as the 
gold standard. Allocca et al70 developed an automated sleep-stage 
classification programme that achieved high accuracy against a 
gold standard of manual visual scoring in human, rodent and 
pigeon polysomnography data. Mousavi et al71 developed a 
DNN to annotate various sleep stages using an openly acces-
sible electroencephalogram (EEG) dataset, achieving an accu-
racy of 84%. Automated monitoring of biosignals has also been 
proposed as a solution to patient-ventilator asynchrony, which 
is a mismatch between ventilator delivery and patient demand. 
Gholami et al72 developed a random forest machine learning 
model to detect cycling asynchrony based on waveform analysis 
with positive and negative predictive values above 90%.

As the use of smartphones, sensors and wearables prolifer-
ates, telemedicine may become an important tool for the self-
management of respiratory disorders. By monitoring clinical 
outcomes at an individual level, such technologies facilitate 
preventive and pre-emptive care while providing medical exper-
tise remotely. Machine learning offers a powerful solution to 
analyse patterns associated with respiratory outcomes in data 
collected by telemonitoring devices.73 Machine learning methods 
such as naïve Bayes classifiers and support vector machines have 
been applied to home peak expiratory flow measurements and 
symptom scores to predict exacerbations a week early in adults74 
and children75 with asthma. Similar studies have also been 
published to predict exacerbations in patients with COPD.76 77

Conclusion and future developments
Research into AI in medicine has accelerated markedly since 
2015, with the field of respiratory medicine being well repre-
sented. DNNs are emerging as a key tool to develop imaging 
biomarkers for diagnosis, prognosis and prediction of response 
to therapy. Figure 2 summarises the process by which machine 
learning models may be developed and incorporated into 
routine clinical practice in the near future. There remains an 
enormous potential for DNNs to embrace domains outside of 
imaging such as pulmonary function tests and physiological 
biosignals. However, a major limitation for such computational 
approaches is a shortage of sufficiently large medical training 
datasets. Overcoming this will require large-scale collaborations 
such as the recently formed Open-Source Imaging Consortium 
(https://www.​osicild.​org/), a collaboration between academia 
and industry to develop imaging biomarkers for idiopathic 
pulmonary fibrosis and other interstitial lung diseases using AI.

Large clinical databases from multicentre randomised 
controlled trials are another underexplored domain. Applying 
DNNs to these detailed datasets, potentially including merged 
data from multiple similar trials, carries the potential to predict 
treatment effects for individual patients, ushering in a new era 
of personalised medicine. The benefits of sharing and reuse of 
individual participant data from clinical trials are increasingly 
recognised but will require a robust internationally recognised 
ethical and legal framework to gain wider adoption and accep-
tance.78 Similarly, data collected during the course of routine 
clinical practice has great potential for training AI algorithms for 
patient benefit. However, clear legal and ethical guidelines are 
needed to maximise the benefit of such datasets while preserving 
the confidentiality of individual patients.79

Natural language processing (NLP) is still at an early stage of 
development but in future may be deployed to extract clinical 
insights from the vast pool of unstructured EHR80 or to extract 
relationships between concepts from the rapidly expanding 
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Figure 2  Typical path for the development of a machine learning 
model and its incorporation into clinical practice. Chest radiograph 
and imaging workstation images are from www.shutterstock.com 
(reproduced under licence). Contributing artists were sfam_photo and 
Zern Liew, respectively.

body of medical research.81 NLP may also be used to accelerate 
the development of AI algorithms for interpreting radiological 
or histological images, by automatically converting free-text 
radiology or pathology reports into a structured format suitable 
for training DNNs, potentially obviating the need for manual 
labelling of cases.82–84

While the advances made over the past 5 years have been 
impressive, a number of challenges must still be overcome 
before AI can be widely adopted into routine clinical prac-
tice.79 85 86 These include intrinsic problems with the machine 
learning algorithms themselves, logistical difficulties and social 
or cultural barriers. It is known that DNNs have the potential to 
misclassify examples that have been subtly altered, even by the 
addition of a few extra pixels.87 In a clinical setting, this could 
manifest as a lack of generalisability; for instance, a DNN model 
trained on imaging data from the latest scanner at an advanced 
care facility may not function properly at a hospital that has 
older machines. Similarly, machine learning models are prone 
to perpetuating biases that may exist in the training dataset, as 
well as spurious associations in which confounding factors are 
used as predictors.86 A related problem with DNNs and other 
complex machine learning algorithms is their lack of interpret-
ability, which may be defined as an ability to provide reasons for 
their output. DNNs often act like ‘black boxes’ with the reasons 
for their output remaining opaque, even to their developers. In 
the medical sphere, interpretability is critical for gaining trust, 
particularly if important management decisions are being made 
based on the evaluation of a DNN. Fortunately, progress is 
now being made towards more interpretable AI. Several tech-
niques have been developed that can generate explanations by 
estimating how the input features or different regions within 
an input image contributed to the output.85 These techniques 
should allow a closer inspection of DNN outputs by clinicians 

so that decisions based on faulty or biased explanations can be 
over-ruled.

In conclusion, AI and machine learning have the power to 
transform many aspects of respiratory medicine. The emergence 
of DNNs developed using big training datasets has resulted in a 
number of novel applications, particularly in the field of thoracic 
imaging. However, DNN models still suffer from problems with 
interpretability, generalisability and potential bias. Rigorous 
validation strategies combined with the development of new 
standards for reporting machine learning models are required 
to address these issues before AI can take its place in the clinic.88
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