On-line Supplement

NOTCH3 contributes to Rhinovirus-induced goblet cell hyperplasia in COPD airway epithelial cells

Yaxun Jing¹, Joao Antonio Giemmens Jr², Rahul Mishra¹, Duc Pham¹, Adam T Comstock¹, Daohai Yu³, Uma S. Sajjan^{1,2,4*}

MATERIALS AND METHODS

Cell cultures

Collection of tracheobronchial segments at the time of double lung transplantation from both COPD recipients and donor lungs for isolation of airway basal epithelial cells was approved by the University of Michigan Institutional review board. Age and clinical status of COPD subjects and healthy donors are provided in Supplemental Table 1. Airway basal epithelial cells were expanded in collagen-coated plastic plates using Bronchial Life medium (Lifeline Cell Technology, Frederick, MD)¹. Cells at passage one were seeded in transwells, grown in bronchial life medium until confluent and then cultured at air/liquid interface for 3 weeks in differentiation medium as described previously to promote mucociliary differentiation^{1,2}. Briefly, the differentiation medium consisted of 1:1 mixture of LHC8 basal medium and DMEM (high glucose), bovine serum albumin (0.5 mg/ml), bovine pituitary extract (0.8%), Insulin (5 μg/ml), Transferrin (10 μg/ml), Hydrocortisone (0.5 μg/ml), triiodothyronine (6.5 ng/ml), epinephrine (0.5 μ g/ml), EGF (0.5 ng/ml), retinoic acid (5 x 10⁻⁸M), phosphorylethanolamine $(0.5 \,\mu\text{M})$, ethanolamine $(0.5 \,\mu\text{M})$, zinc sulphate $(3 \,\mu\text{M})$, Calcium chloride $(0.11 \,\text{mM})$, ferrous sulphate (1.5 x 10⁻⁶M), Magnesium chloride (6 x 10⁻⁴M), 1 X trace elements B (CorningTM) cellgroTM).

RV and infection of airway epithelial cell cultures

RV16 and RV1B were purchased from ATCC, propagated in H1 HeLa cells, partially purified and viral titer was determined by plaque assay as described ³. Less than 100kDa fraction from purified RV preparation was used as sham control. All the *in vitro* experiments were performed with RV16, a major group virus. *In vivo* experiments were conducted with minor group virus RV1B, because major group virus do not infect mice efficiently ³. Moreover, RV1B has been demonstrated to stimulate similar cytokine and chemokine responses in human airway epithelial cells *in vitro* ³.

Infection of cell cultures

Apical surface of mucociliary-differentiated cells was washed with 0.15% sodium bicarbonate to remove secreted mucus and rinsed once with PBS and then infected apically with 10 µl of PBS containing RV at 1 MOI or equivalent volume of sham and incubated for 15 days as described previously⁴. Medium in the basolateral chamber was changed every other day. In some experiments, cells were treated basolaterally with 0.1, 1, 2.5 or 5 µM erlotinib or 1, 5, 10 or 20 μ M γ -secretase inhibitor N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT, Sigma Aldrich LLC, St. Louis, MO) or DMSO (vehicle control) every second day starting from 2 days after RV infection. In selected experiments cells were treated with neutralization antibody to IL-13 (4 µg/ml) or normal mouse IgG (both from R & D systems, Minneapolis, MN) either basolaterally or apically every second day starting from 2 days postinfection. In some experiments, cells were pretreated with erlotinib for 7 days every other day and infected with sham or RV, and cultures were maintained as above. Cytotoxicity of these agents was determined by assessing lactate dehydrogenase (LDH) levels in the basolateral medium using CytoTox96[®] Non-radioactive Cytotoxicity assay kit (Promega Corp., Madison, WI).

Treatment of cell cultures with IL-13

Normal cell culture (N43) was cultured with IL-13 (1ng/ml) during the 2^{nd} and 3^{rd} of culturing. Cells were maintained for additional one week without added IL-13 in the medium. Some cultures were treated with IL-13 neutralizing antibody (4 μ g/ml) or isotype control from the basolateral side every other day for 14 days.

Transduction of primary human airway epithelial cells

Primary human airway epithelial cells were transduced with GIPZ lentivral human NOTCH1 or NOTCH3 shRNA or control shRNA (all form Dharmacon) during the first week of culturing as described previously ⁴.

Quantitation of goblet cells

Quantitation of goblet cells in airway epithelial cell cultures was performed as described previously¹. After relevant treatment, 0.3 ml of 0.15% sodium bicarbonate in PBS was added to the apical surface and incubated for 30 min to remove the apical mucus. The apical surface of the culture was then washed twice with PBS and then immediately fixed in ice cold methanol for 5 minutes. The cultures were then washed with PBS, blocked in normal PBS containing 5% donkey serum and 1% BSA (blocking buffer) and incubated with 1:5,000 diluted rabbit polyclonal antibody to human tracheobronchial mucins⁵ overnight at 4° C. Unbound antibody was washed and the bound antibody was detected with antirabbit IgG conjugated with Alexafluor-594. Cell cultures were counterstained with DAPI to detect nuclei. Cultures were mounted, imaged using confocal microscope and the optical section just below the apical surface was used to count the goblet cells. Goblet cells were counted in 25 random 0.1 mm2 areas per culture and averaged.

RV infection of mice

All the protocols used for animal experiments were approved by Institutional Animal Care and User Committee at the University of Michigan. Mice with COPD phenotype were generated as described previously⁶. Briefly, 6 - 8 weeks old C57BL/6 female mice were exposed to cigarette

smoke using TE10 automated cigarette smoking machine for 2 hours a day, 5 days a week for 8 weeks. These mice were also treated with heat-killed nontypeable H. influenzae twice at the end of 2 weeks and then again at the end of 4 weeks during the 8 week exposure to cigarette smoke. These treatment conditions induced mild COPD-like lung disease encompassing both parenchyma and conductive airways. Mice with mild COPD phenotype and age matched normal C57BL/6 mice were briefly anesthetized with isoflurane and infected with 50 µl of 1 x 10⁸ PFU/ml RV1B by intranasal route ⁶. Mice were then treated every other day with 50 µl of gamma secretase inhibitor L685,458 (Sigma Aldrich) (0.003, 0.03 or 0.3 mg/kg body weight corresponding to 0.1, 1 or 10 nmol) or DMSO by intranasal route⁷. At 8 days post-infection mice were sacrificed and lungs were processed for either isolation of total RNA or fixed and embedded in paraffin.

Western blot analysis

After relevant treatment, cells were washed with cold PBS and lysed in RIPA buffer containing protease and phosphatase inhibitors. Equal amount of protein was subjected to Western blot analysis with antibodies to NOTCH1, NOTCH3 or HEY1 (Cell signaling), or β -actin (Sigma Aldrich). Specific bands were quantified by densitometry using NIH image J and expressed as fold change over β -actin or over respective total protein.

Histology

PAS-Alcian blue staining

Primary human airway epithelial cell cultures were fixed in buffered formalin, and embedded in paraffin as agarose plugs as previously described⁸. Five micron thick sections were deparaffinized and stained with PAS/Alcian blue using Leica Alcian Blue and PAS Special Stain

Kit (Leica Biosystems Inc., Buffalo Grove, IL).

After relevant treatment, mice were sacrificed, lung were inflation fixed and embedded in paraffin. Five micron thick sections were deparaffinized and stained with periodic Schiffs reagent to detect goblet cells in the airway epithelium.

Gene arrays and real time PCR

Microarrays and analysis was performed in Microarray core facility and the microarray data was analyzed by a Bioinformatics specialist at the University of Michigan. Normal and COPD cells infected with sham or RV were harvested at 14 days post-infection, total RNA was isolated by using microRNeasy kit (Qiagen, Valencia, CA) involving DNAse treatement step. Quality and concentration of each RNA samples was assessed with Agilent Bioanalyzer (Agilent Technologies, Paol Alto, CA). Double stranded cDNA was synthesized from 2 µg of total RNA followed by clean up with GeneChip Sample Cleanup Module. Biotin-labeled cRNA was then synthesized by in vitro transcript reaction using GeneChip IVT labeling kit. Purified and quantified cRNA was hybridized to affymatrix Human Gene ST 2.1 test chips and the microarrays were performed following instructions from the manufacturer. Raw expression data obtained from Affymetrix microarrays were background corrected and quantile normalized across experimental conditions⁹. The LIMMA methodology (Linear Models for Microarray Data) was applied to the log₂-transformed expression data to identify differentially expressed genes for each comparison¹⁰. Differentially expressed genes were identified based on statistical significance as well as biological significance. Differentially expressed genes from these filters were combined and a list of common genes showing greater statistical and biological significance (lower p value and up/down regulated by more than 2-fold) were identified for further bioinformatics and pathway analyses using the Ingenuity Pathway Analysis

(www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/).

After relevant treatment, total RNA was isolated from airway epithelial cells or mouse lungs and the expression of NOTCH1, NOTCH2, NOTCH3, NOTCH4, JAG1, JAG2, DLL1, DLL2, DLL4, HEY1, HEYL, HES1, HES5, MUC5AC, MUC5B, FOXA2, FOXA3, FOXJ1, and SPDEF was determined by using gene specific primers and presented as fold change over house-keeping gene, glyceraldehyde 3-phosphate dehydrogenase (G3PDH for cells) ¹¹ or β -actin (for mouse). All primers and probes were purchased from either Applied Biosystems or Intetrated DNA Technologies.

Statistical analysis

All cell culture experiments were performed 3 times in duplicate or triplicates and data was averaged for each subject and then subjected statistical analyses. Animal experiment was conducted two times with 3 animals in each group for a total of 6 groups per group. Data was analyzed by non-parametric analyses, such as the Wilcoxon rank sum test (for comparisons between two independent groups), or sign-rank test (for paired comparison between the groups or intracomparison between sham and RV-infected cultures) to assess the statistical significance. A p-value of <0.05 was considered statistically significant. SAS version 9.4 (SAS Institute Inc., Cary, NC) was used for all the data analyses. Percent of inhibition was calculated considering 100% for DMSO-treated or NTshRNA-transfected samples and expressed as % inhibition ± SD.

Supplemental Table 1

No	Age (Yr)	Gender	FEV1 (%)	Smoking history (pack years)	Emphysema
COPD					
1	62	Male	25	28	Severe
2	53	Female	13	70	Severe
4	55	Female	56	27	Mild
6	65	Male	15	120	Severe
7	58	Female	25	70	Moderate
9	59	Male	22	70	Severe
11	59	Male	22	25	Moderate
12	45	Male	17	31.25	None
Healthy non-					
smokers					
1	54	Female			
2	59	Male			
3	47	Male			
4	48	Male			
5	41	Female			
6	50	Female			
7	40	Male			
8	48	Female			
9	46	Male			

Characteristics of patients with COPD and healthy non-smokers

All tissue samples were obtained from the University of Michigan and have been previously described $^{\rm 8}$

Transcript Cluster ID	C-RV	C-S	Fold Change (linear) (C-RV vs. C-S)	ANOVA p- value (C-RV vs. C-S)	FDR p-value (C-RV vs. C-	Gene Symbol
16774436	(log2) 4.33	(log2) 5.41	-2.11	0.000038	S) 0.151281	LINC00284
16734237	4.33 6.32	4.97	2.55	0.000038	0.157297	RP11-532E4.2
16684080	7.61	6.36	2.33	0.000165	0.160371	IFI6
16720601	8.66	7.3	2.50	0.000408	0.179661	MUC5B
17089003	5.03	3.39	3.13	0.000403	0.179661	OLFML2A
16986501	5.37	4.26	2.17	0.000433	0.181216	PDE8B
16825561	3.68	2.53	2.17	0.000997	0.181216	SEZ6L2
16683105	5.95	4.9	2.08	0.001134	0.185069	HSPG2
16902254	5.23	4.9	2.00	0.001189	0.188646	TMEM185B
16949062	3.09	2.03	2.07	0.001631	0.201113	EPHB3
17001299	3.88	2.85	2.05	0.001794	0.201625	DPYSL3
17097661	8.11	6.74	2.57	0.00194	0.201625	TNC
16777777	6.02	4.87	2.22	0.002022	0.201625	SLC7A1
16856627	5.22	3.91	2.48	0.002049	0.201625	020774
17119118	5.22	3.91	2.48	0.002049	0.201625	
17090713	7.36	5.35	4	0.002444	0.202803	CEL
17078452	4.53	3.09	2.72	0.002479	0.202803	HEY1
16752715	6.56	5.42	2.2	0.002555	0.203548	LRP1
16840611	5.58	4.32	2.4	0.002947	0.203548	YBX2
17115505	5.56	4.53	2.05	0.002971	0.203548	FLNA
16954898	1.76	2.83	-2.1	0.003068	0.203548	RNU6-856P
16832479	4.65	3.57	2.11	0.003224	0.203548	SLC13A2
16989736	6.03	4.81	2.33	0.003279	0.203548	EGR1
17108816	5.53	3.79	3.34	0.003382	0.203548	MXRA5
16686060	10.13	9.03	2.13	0.003496	0.203548	SLC2A1
16718126	6.65	5.62	2.04	0.003619	0.203548	COL17A1
16924602	3.46	2.44	2.03	0.004328	0.20477	ADAMTS1
16996180	3.31	4.86	-2.93	0.00458	0.20477	MIR449C
16657598	5.8	4.67	2.18	0.004685	0.20477	AGRN
16837938	8.54	7.29	2.37	0.005006	0.204916	ITGB4
17117581	5.74	4.64	2.15	0.005173	0.205852	LOC100128816
16836824	3.99	2.83	2.24	0.005213	0.206494	MRC2
16869769	6.04	4.75	2.45	0.005706	0.209394	NOTCH3
16839642	5.76	4.53	2.34	0.005873	0.209394	CLUH
16702175	6.73	5.67	2.08	0.005879	0.209394	PFKFB3
16712277	3.78	2.43	2.54	0.005904	0.209394	ST8SIA6
17067422	1.43	2.56	-2.19	0.00591	0.209394	RNA5SP259

Table 2: List of genes changed by 2 fold with p value of <0.05 in RV-infected COPD cell cultures

17100036	5.38	4.31	2.1	0.005951	0.209394	NOTCH1
17030426	7.71	6.59	2.17	0.006378	0.212632	DDR1
17001901	7.39	6.26	2.18	0.006831	0.213754	FAT2
17100675	8.97	7.95	2.03	0.00697	0.214023	MT-TH
16681477	8.61	7.54	2.09	0.007014	0.214023	CLSTN1
						RP11-
16818501	5.57	4.55	2.03	0.007372	0.216137	598D12.4
16824063	4.04	2.96	2.11	0.00785	0.219444	LOC101927311
17033131	7.76	6.71	2.07	0.00786	0.219444	DDR1
17037907	7.76	6.71	2.07	0.00786	0.219444	DDR1
16828913	3.48	2.12	2.56	0.00807	0.219444	RNU1-103P
16908822	4.45	3.36	2.14	0.008594	0.219911	CHPF
16797196	7.45	6.43	2.03	0.008757	0.219911	AHNAK2
16700888	2.96	1.75	2.3	0.008858	0.219978	NID1
17027581	7.66	6.64	2.03	0.009095	0.219978	DDR1
16802903	4.66	3.36	2.46	0.009132	0.219978	LOXL1
16715847	1.53	0.45	2.11	0.00969	0.221789	RNU6-1266P
16958403	6.16	4.94	2.32	0.009874	0.222578	HEG1
17117537	4.79	3.76	2.04	0.010177	0.224257	LOC100131262
16989861	2.47	3.5	-2.03	0.010598	0.226159	
16981694	2.65	3.82	-2.25	0.010861	0.22704	SPATA4
16729155	3.2	2.07	2.19	0.010982	0.227726	MOGAT2
16669180	7.64	6.53	2.17	0.011394	0.229138	PTGFRN
17108067	4.12	2.86	2.4	0.012144	0.232047	
16850107	6.89	5.66	2.35	0.012167	0.232047	FASN
16855242	1.08	2.11	-2.04	0.012764	0.234088	RNA5SP457
16892073	2.03	3.31	-2.43	0.014076	0.240425	RNU1-93P
16908197	5.97	4.71	2.4	0.015489	0.246436	IGFBP5
16660976	6.88	5.84	2.06	0.016342	0.251089	SEPN1
16777571	5.08	3.88	2.29	0.016587	0.251802	SHISA2
16872276	3.54	2.2	2.52	0.01681	0.252259	FCGBP
16825055	2.86	3.87	-2.01	0.016947	0.252828	
16770254	2.87	3.92	-2.07	0.016975	0.252828	
						RP11-
16703174	1.45	2.47	-2.03	0.016983	0.252828	301N24.3
16885976	4.15	5.16	-2.02	0.017863	0.256046	
17087926	0.88	2.04	-2.24	0.018543	0.257915	
16820157	8.87	7.86	2.01	0.018719	0.258562	HSD11B2
17098624	2.29	1.22	2.1	0.018896	0.259266	RNA5SP296
17100685	8.74	7.56	2.25	0.019114	0.259953	MT-TT
16854777	1.79	2.88	-2.12	0.020026	0.262512	
17101193	2.77	1.76	2.01	0.020976	0.265456	
17005072	4.01	5.04	-2.03	0.02156	0.266673	RNU6-522P
16824810	5.36	4.22	2.21	0.02177	0.267481	CRYM

17020727	0.58	2.23	-3.14	0.0225	0.269548	MIR30A
16673654	3.59	4.78	-2.28	0.023181	0.271908	MROH9
17007048	3.16	2.14	2.02	0.0232	0.27195	C4A
16712076	3.58	2.57	2.01	0.02527	0.27876	FAM171A1
16915113	1.96	0.89	2.1	0.026857	0.283786	
17041111	3.26	2.24	2.04	0.026891	0.283896	C4B
16859657	8.47	7.43	2.06	0.027874	0.287794	SLC5A5
16825623	4.46	3.41	2.07	0.028346	0.289129	TBX6
16947869	2.64	4.04	-2.63	0.029578	0.294049	RNU4-38P
17031045	3.3	2.28	2.03	0.029723	0.294629	C4B
16912224	1.32	2.93	-3.05	0.030841	0.299381	RP13-401N8.1
16972961	2.6	3.78	-2.26	0.031137	0.299962	C4orf47
17113129	3.22	4.45	-2.34	0.033299	0.306089	NUP62CL
16707541	5.3	4.21	2.14	0.033677	0.307944	CYP26A1
16814366	6.03	4.94	2.14	0.03562	0.314685	MSLN
16832218	3.95	2.85	2.15	0.0379	0.322678	
16819484	8.05	6.94	2.16	0.037984	0.322734	CX3CL1
16882536	2.68	3.87	-2.27	0.038036	0.32291	
16961197	2.86	4.12	-2.39	0.038407	0.323631	
16989396	3.95	2.93	2.03	0.039038	0.324572	PCBD2
17007118	3.29	2.19	2.13	0.042704	0.334322	C4B
16816962	5.78	4.75	2.05	0.043612	0.336693	SCNN1G
17011555	2.43	3.51	-2.12	0.043626	0.336693	CCDC162P
16996157	3.62	4.96	-2.53	0.045998	0.343354	CDC20B
16908037	2.97	5.21	-4.74	0.049596	0.351828	FN1

Data is based on the cells obtained from 8 COPD subjects

Transcript	N-RV Bi-weight Avg Signal	N-S Bi-weight Avg Signal	Fold Change (linear) (N-	ANOVA p- value (N-	FDR p-value (N-RV vs. N-	
Cluster ID	(log2)	(log2)	RV vs. N-S)	RV vs. N-S)	S)	Gene Symbol
17121346	3.89	4.94	-2.07	0.000137	0.255565	PKD1;
16711413	5.21	4.19	2.03	0.000167	0.255565	RP13-463N16.6
17061129	3.23	4.39	-2.24	0.00032	0.255565	RASA4;
17038014	7.61	8.68	-2.1	0.000557	0.255565	MUC21
17006532	6.55	7.73	-2.26	0.000885	0.264285	MUC21
17026232	6.55	7.73	-2.26	0.000885	0.264285	MUC21
17030532	6.55	7.73	-2.26	0.000885	0.264285	MUC21
17035325	6.88	8.01	-2.19	0.000888	0.264285	MUC21
16666485	6.27	4.47	3.48	0.001505	0.27582	IFI44L
17033237	6.59	7.79	-2.29	0.001544	0.27582	MUC21
17073368	1.48	2.61	-2.18	0.001623	0.27582	RP11-661A12.4
17100036	4.2	5.25	-2.08	0.002239	0.27582	NOTCH1
16707196	2.55	1.43	2.17	0.002349	0.27582	IFIT1
17080648	7.21	5.89	2.5	0.002479	0.27582	HAS2
17115505	4.43	5.44	-2.02	0.002648	0.27582	FLNA
17108816	3.63	5.26	-3.11	0.002749	0.27582	MXRA5
16862721	2.81	4.12	-2.47	0.003169	0.27582	MEGF8
16717272	4.55	5.64	-2.12	0.00362	0.280537	LOXL4
16929631	4.44	5.55	-2.16	0.003681	0.281221	
17121498	3.76	4.88	-2.18	0.00458	0.281221	ARHGAP23P1
16867432	5.55	6.59	-2.06	0.005691	0.281221	PTPRS
16991948	3.39	4.76	-2.58	0.005979	0.281221	TENM2
16963127	7.29	8.58	-2.46	0.006061	0.281221	MUC4
16787814	3.01	1.99	2.03	0.006093	0.281221	IFI27
17100649	2.48	3.78	-2.47	0.006158	0.281221	MT-TI
16913303	2.68	3.88	-2.29	0.006709	0.281221	
17097034	1.77	2.89	-2.18	0.006712	0.281221	
17022610	0.68	1.82	-2.2	0.007146	0.281221	RNU6-957P
17112349	5.12	3.86	2.4	0.007463	0.281221	CYSLTR1
16707180	4	2.95	2.07	0.007531	0.281221	IFIT2
16752715	5.1	6.19	-2.12	0.007854	0.281221	LRP1
17098624	2.82	1.6	2.33	0.008083	0.281221	RNA5SP296
16773581	3.29	4.35	-2.1	0.008425	0.281221	RNU6-82P
17064020	2.79	4.12	-2.51	0.008594	0.281221	OR2A7
16683105	4.75	5.76	-2.01	0.00918	0.281221	HSPG2

Supplemental Table 3. List of genes changed by 2 fold following RV infection in normal cell cultures

16797196	6.28	7.57	-2.44	0.009574	0.281221	AHNAK2
16763966	4.34	3.17	2.25	0.009658	0.281221	SNORA2A
16837938	7.01	8.14	-2.19	0.00993	0.281221	ITGB4
17061125	2.28	3.5	-2.33	0.010077	0.281221	RASA4
17096166	4.08	2.95	2.2	0.010123	0.281221	HSD17B3
16681477	7.32	8.38	-2.08	0.010519	0.281221	CLSTN1
16800536	4.73	5.75	-2.03	0.01092	0.281221	DUOX1
16682487	4.27	5.32	-2.06	0.011604	0.281391	IFFO2
16846193	0.67	2.25	-3	0.011674	0.281391	RNU6-1201P
16775844	6.32	5.28	2.05	0.011742	0.281391	CLDN10
16812344	3.75	2.07	3.2	0.012213	0.281867	BCL2A1
17120724	1.57	0.5	2.11	0.012793	0.283184	PABPC1P4
16668170	4.57	5.78	-2.32	0.012901	0.283184	CELSR2
17009316	7.43	6.29	2.2	0.013854	0.283184	ENPP4
16945870	8.5	7.38	2.17	0.015061	0.284666	TF
17054755	3.33	4.38	-2.08	0.015094	0.284683	TNRC18
17089003	3.35	4.5	-2.22	0.015732	0.287193	OLFML2A
17008651	1.09	2.17	-2.12	0.015736	0.287193	RNU6-890P
16836824	2.69	3.87	-2.28	0.016755	0.292885	MRC2
16738258	1.33	2.34	-2.02	0.016927	0.293482	
16676661	3.8	2.79	2.02	0.016972	0.293521	IL19
16854780	2.8	1.28	2.86	0.017093	0.293521	
16681095	3.29	4.44	-2.22	0.018257	0.297321	GPR153
16803754	2.54	3.71	-2.25	0.018361	0.297321	CEMIP
17067326	2.19	3.41	-2.34	0.018757	0.297321	MIR3622A
16815812	2.75	3.93	-2.26	0.019151	0.297321	RP11-27M24.1
16846218	4.64	3.47	2.24	0.019423	0.297321	HOXB2
16912742	6.17	4.98	2.28	0.019886	0.297321	BPIFA2
16863074	5	6.19	-2.29	0.020789	0.297321	BCAM
16855944	3.3	1.95	2.55	0.020885	0.297321	
16700147	3.83	4.85	-2.03	0.021183	0.297321	WNT9A
16734299	1.6	2.84	-2.36	0.021408	0.297904	FAM99B
16923145	3.66	4.71	-2.07	0.021437	0.297904	ABCG1
17125892	2.98	4.07	-2.13	0.021621	0.297917	
17125914	2.98	4.07	-2.13	0.021621	0.297917	
16904278	6.92	5.66	2.39	0.022553	0.300285	DPP4
17121500	3.42	4.47	-2.08	0.022771	0.300285	ARHGAP23
16919703	4.91	5.96	-2.07	0.02327	0.300865	PLTP
16908037	2.72	4.68	-3.88	0.023724	0.300865	FN1
17097432	3.95	2.92	2.04	0.024256	0.302081	RNF183
17119708	3.18	2.07	2.15	0.025455	0.302081	ERVK-7

16712277	3.9	2.67	2.35	0.0256	0.302081	ST8SIA6
16990294	3.19	4.22	-2.04	0.026426	0.303146	PCDHB10; PCDHB9
16936097	5.37	6.41	-2.07	0.030474	0.310853	CELSR1
16839642	4.55	5.68	-2.18	0.031959	0.313263	CLUH
16975417	1.6	2.67	-2.11	0.032953	0.316136	MIR4802
17029847	3.11	1.76	2.56	0.033373	0.317657	HLA-DPA1
17118030	1.35	2.44	-2.13	0.035521	0.321374	LOC100131826
16824810	4.74	3.69	2.08	0.035533	0.321374	CRYM
16694611	2.5	3.64	-2.21	0.035615	0.321374	
16956792	2.91	3.97	-2.08	0.035623	0.321374	ABI3BP
16862427	4.71	5.78	-2.1	0.035729	0.321504	CYP2S1
16858573	3.24	2.17	2.11	0.03717	0.323767	
17120814	1.05	2.16	-2.15	0.037347	0.32392	
17126022	3.09	4.22	-2.19	0.038553	0.32527	
17096328	2.8	1.58	2.33	0.038897	0.326287	
16908817	1.16	2.22	-2.08	0.040016	0.328088	AC053503.6
16929197	3.84	2.7	2.21	0.040711	0.330269	RNA5SP496
17093227	1.14	2.4	-2.38	0.045345	0.335868	
17125866	1.38	2.54	-2.23	0.046011	0.337703	MIR3135A
16913176	2.81	1.8	2.01	0.046242	0.33816	SPAG4
16758730	2.61	3.74	-2.2	0.047372	0.340469	DNAH10

The data is based on microarray analysis carried out on cells obtained from 9 healthy non-smokers

Supplemental Figure Legends

Supplemental Figure 1. Mucin gene expression correlates with percent predicted FEV1 in COPD subjects. Mucociliary-differentiated cell cultures was established from airway basal cells obtained from 8 COPD subjects. A and B. Total RNA was isolated and expression of *MUC5AC* and *MUC5B* was determined by qPCR and plotted against percent of predicted FEV1 for individual patient. R^2 was calculated from linear regression analysis.

Supplemental Figure 2. Effect of RV on the expression levels of FOXA2, SPDEF, FOXJ1 or SCGB1A1 in either normal or COPD cell cultures. Mucociliary-differentiated normal or COPD airway epithelial cell cultures established from airway basal cells obtained from 9 healthy non-smokers and 8 COPD subjects were infected with sham or RV. At 15 days post-infection, total RNA was isolated and mRNA expression of FOXA2, FOXJ1, SPDEF and SCGB1A1, was determined by qPCR. Expression of these genes was normalized to house-keeping gene G3PDH and average from 3 independent experiments was calculated and presented as range with median. A, C, E and G, comparison of sham-infected normal COPD cultures (the Wilcoxon rank sum test). B, D, F and H, intracomparison of gene expression between sham- and RV-infected cultures (the sign-rank test).

Supplemental Figure 3. IL-13 does not contribute to RV-induced GCH in COPD cell cultures. A. Mucociliary-differentiated airway epithelial cell cultures established from 8 healthy and 8 COPD subjects were infected with RV or sham and expression of *IL-13* was determined by qPCR after 15 days). Data represent average from 3 independent experiment for each subject (intracomparison, the sign-rank test). B to D. Cell cultures established from 3 COPD subjects were infected with sham or RV, treated with either neutralizing antibody to IL-13 or isotype control for 14 days on every second day starting from 2 days post-infection and number of goblet

cells and expression of mucin genes were determined. Data represent average calculated from 3 independent experiments for each subject. E to H, Normal cell culture (N43) was cultured with IL-13 to promote GCH. Cultures were maintained for additional one week with no IL-13. I to K, Normal cell culture (N43) cultured with IL-13 were treated with neutralizing antibody to IL-13 or isotype control (IgG). E. Paraffin sections of control and IL-13-treated cell cultures were stained with PAS to detect goblet cells (Arrows indicate goblet cells). Image is representative of three independent experiments conducted in duplicates. F. From identical experiments, cells were fixed with methanol and immuno-stained with antibody to tracheobronchial mucins to quantify goblet cells. G - K. Total RNA was isolated and the expression of mucin genes and *SPDEF* were determined by qPCR. Data in F – K represent mean calculated from three independent experiments performed in duplicates.

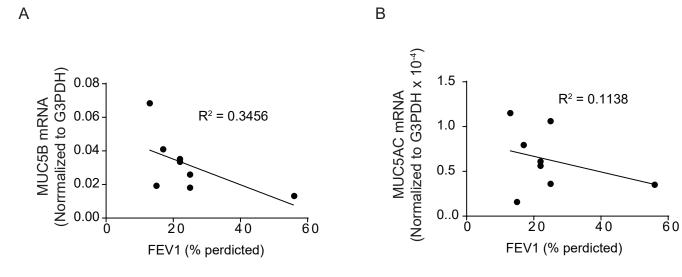
Supplemental Figure 4. Erlotinib inhibits EGFR phosphorylation in COPD airway epithelial cells. Mucociliay-differentiated COPD airway epithelial cell culture (cells obtained from one subject, C7) was infected with sham or RV and maintained for 15 days. Cultures were treated basolaterally with DMSO (control) or erlotinib at 0.5, 1, 2.5 or 5 μ M every other day starting from 2 days post-infection. A. Total protein isolated from DMSO or erlotinib (0.5 and 1 μ M) treated cultures was subjected to Western blot analysis to assess p-EGFR and total EGFR. Image is representative of three independent experiments carried out in triplicates. B. Spent medium was collected at 6, 10, 12 and 14 days post-infection for measurement of LDH activity. Data represent mean calculated from 3 independent experiments in triplicates.

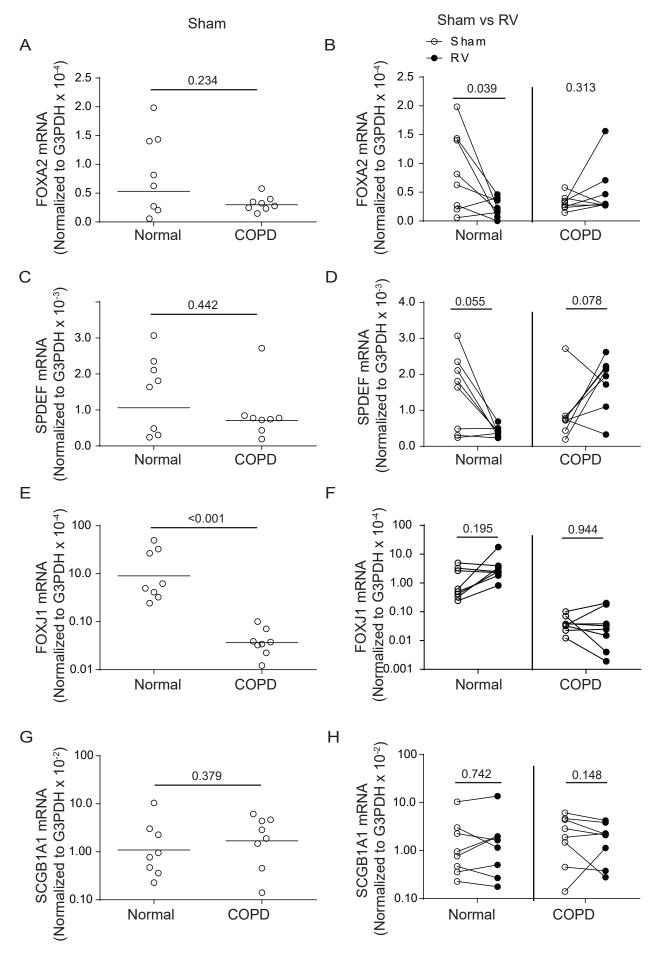
Supplemental Figure 5: Pretreatment with erlotinib does not reduce RV-induced GCH in COPD cell cultures. Mucociliay-differentiated COPD airway epithelial cell culture (cells obtained from one subject, C7) was pretreated with 1 µM for 7 days and then infected with RV or sham. A and

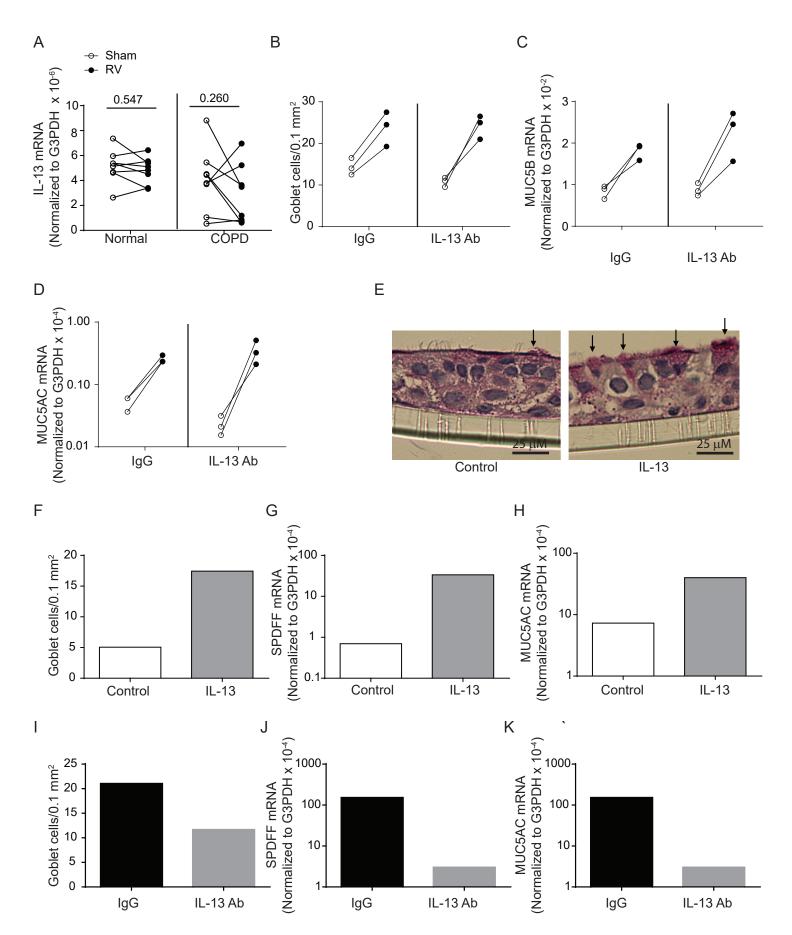
B. At 15 days post-infection, total RNA was isolated and expression of MUC5B and MUC5AC was determined. C. From identical experiments, cells were fixed with methanol and immunostained with antibody to tracheobronchial mucins to quantify goblet cells. Data represent mean calculated from 3 independent experiments in triplicate.

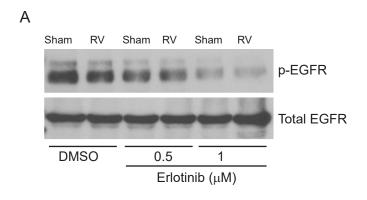
Supplemental Figure 6: RV increases *JAG1* and *JAG2* expression in COPD cell cultures. Mucociliary-differentiated normal or COPD airway epithelial cell cultures established from airway basal cells obtained from 8 healthy non-smokers and 8 COPD subjects were infected with sham or RV. At 15 dyas post-infection, total RNA was isolated and mRNA expression JAG1, JAG2, DLL1, DLL2, DLL4, NOTCH2, NOTCH4, HES1, HES5, and HEYL was determined by qPCR. Expression of all these genes was normalized to house-keeping gene G3PDH. Intracomparison of gene expression between sham- and RV-infected cultures in normal and COPD groups (n=3, the sign rank test).

Supplemental Figure 7. Treatment with 10 µM DAPT reduces RV-induced *HEY1* in COPD cell cultures. Mucociliay-differentiated COPD airway epithelial cell culture (cells obtained from one subject, C7) was infected with sham or RV and maintained for 15 days. Cultures were treated basolaterally with DMSO (control) or DAPT at 1, 5, 10 and 20 µM every other day starting from 2 days post-infection. A. Total protein isolated at 15 days post-infection from DMSO and DAPT treated cells was subjected to Western blot analysis to assess HEY1 expression. Image is representative of three independent experiments carried out in triplicates. B. Spent medium was collected at 14 days post-infection for measurement of LDH activity. Data represent mean calculated from 3 independent experiments in triplicates. C. COPD cell cultures (8 subjects) were infected with sham or RV and then treated with DAPT every second day for 15 days.

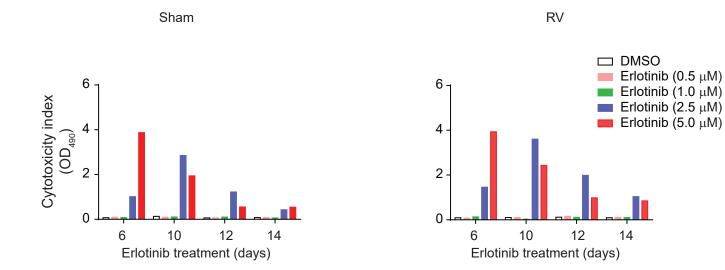

Expression of SCGB1A1 was determined by qPCR using total RNA. Data represent intracomparison between sham and RV infected cultures (n=3, the sign-rank test).

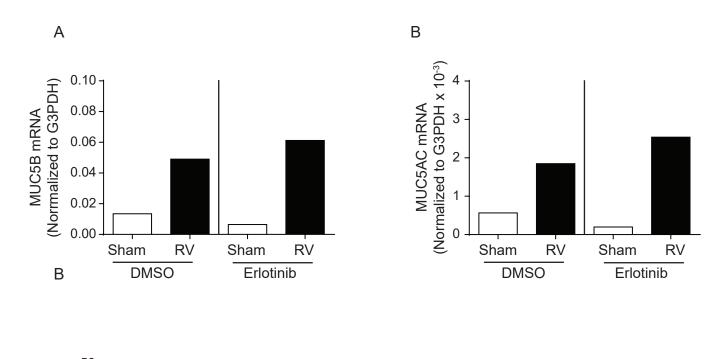

Supplemental Figure 8. Neutralization of IL-13 does not inhibit RV-induced GCH *in vivo*. Mice with COPD phenotype were infected with sham or RV1B. A. At 8 days post infection, total RNA was isolated and lung mRNA levels of IL-13 was assessed by qPCR. B and C. RV- or sham-infected mice were treated with neutralizing antibody to IL-13 or isotype control by intranasal route every alternate day for 8 days. mRNA levels of Muc5AC and Foxa3 were determined by qPCR. Data represent range with median and data was compared between sham and RV within the groups (the Wilcoxon rank sum test).

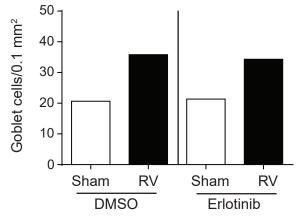

References

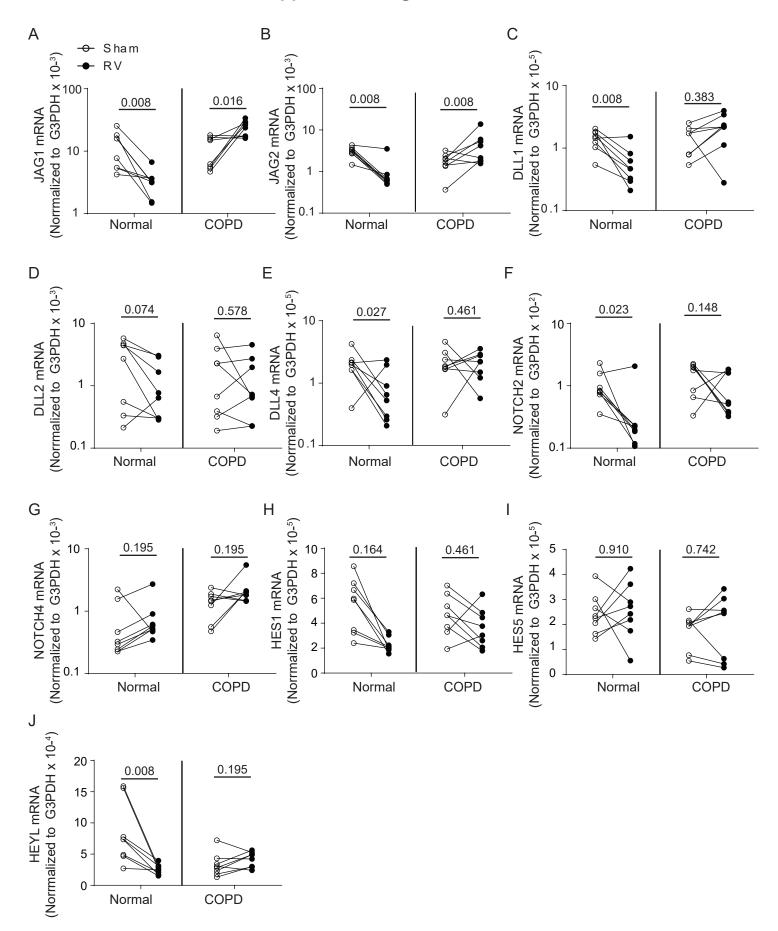

- Faris AN, Ganesan S, Chattoraj A, et al. Rhinovirus Delays Cell Repolarization in a Model of Injured/Regenerating Human Airway Epithelium. Am J Respir Cell Mol Biol 2016;55(4):487-99
- Fulcher ML, Gabriel S, Burns KA, et al. Well-differentiated human airway epithelial cell cultures. Methods in molecular medicine 2005;107:183-206
- 3. Newcomb DC, Sajjan US, Nagarkar DR, et al. Human rhinovirus 1B exposure induces phosphatidylinositol 3-kinase-dependent airway inflammation in mice. Am J Respir Crit Care Med 2008;177(10):1111-21
- 4. Faris AN, Ganesan S, Chattoraj A, et al. Rhinovirus Delays Cell Repolarization in a Model of Injured/Regenerating Human Airway Epithelium. Am J Respir Cell Mol Biol 2016
- 5. Sajjan U, Moreira J, Liu M, et al. A novel model to study bacterial adherence to the transplanted airway: inhibition of Burkholderia cepacia adherence to human airway by dextran and xylitol. J Heart Lung Transplant 2004;23(12):1382-91
- 6. Ganesan S, Comstock AT, Kinker B, et al. Combined exposure to cigarette smoke and nontypeable Haemophilus influenzae drives development of a COPD phenotype in mice. Respir Res 2014;15:11
- 7. Kang JH, Kim BS, Uhm TG, et al. Gamma-secretase inhibitor reduces allergic pulmonary inflammation by modulating Th1 and Th2 responses. Am J Respir Crit Care Med 2009;**179**(10):875-82
- Schneider D, Ganesan S, Comstock AT, et al. Increased cytokine response of rhinovirusinfected airway epithelial cells in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010;182(3):332-40

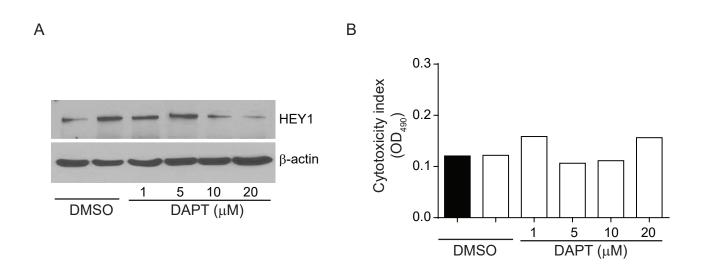
- Bolstad BM, Irizarry RA, Astrand M, et al. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003;19(2):185-93
- 10. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical applications in genetics and molecular biology 2004;3:Article3
- 11. Comstock AT, Ganesan S, Chattoraj A, et al. Rhinovirus-induced barrier dysfunction in polarized airway epithelial cells is mediated by NADPH oxidase 1. J Virol 2011;85(13):6795-808



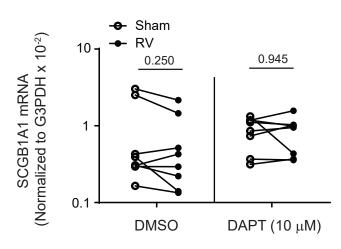


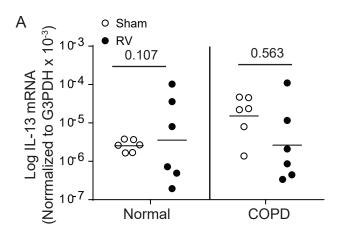


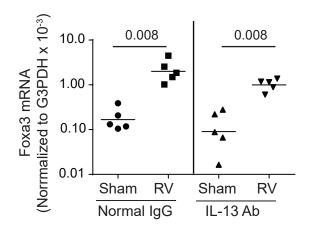


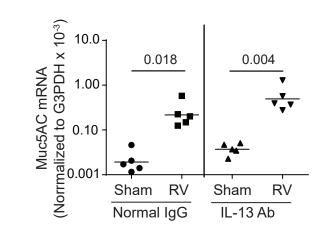

Erlotinib $(1.0 \mu M)$

14






С



С

