Online supplement

2 Methods

1

12

13

14

3 OPCRD info

- 4 Data were obtained from the Optimum Patient Care Research Database (OPCRD)[1]. The OPCRD
- 5 dataset comprises medical records of more than 11 million patients from over 800 general practices
- 6 across the UK (approximately 8% of the total UK population), and integrates with all UK clinical systems
- 7 (EMIS, TPP SystmOne, InPS Vision, Microtest Evolution). It benefits from a long retrospective period
- 8 (median time in the database is 19.8 (12.8-25.7) years, going back to birth for summary diagnostic data
- 9 in many cases), and contains linked patient-completed respiratory questionnaires for approximately
- 10 10% of asthma patients included.[1] The OPCRD is approved by the UK National Health Service for
- 11 clinical research use (Research Ethics Committee reference: 15/EM/0150).

S-Table 1: Variables collected from OPCRD at baseline (1 year before the index date)

Variable	Description				
Fixed variable	s measured on index date or at/close to baseline				
Age at start of lung function record	Age in years on index date.				
Gender	Female or Male				
Height	Measurement in metres (m) on reading closest to index date, in adulthood				
Body Mass Index (BMI)	Defined as the ratio of weight (kg) to squared height (m²) on index date (or closest date). Categorised as: Underweight <18.5 Normal w eight 18.5 to <25 Overweight 25 to <30 Obese 30 and over				
Age of Asthma Onset	Age of onset of asthma was estimated as the first date where a diagnostic code for asthma was recorded in the patient EMR, excluding patients who fit the following criteria, for whom age of onset was defined as missing due to insufficient data: • First asthma diagnosis record is <3 years from patient registration at the GP practice (possible active asthma prior to registration) • First asthma diagnosis record is ≥3 years from patient registration at the GP practice but inhalers are prescribed in registration year (possible active asthma prior to registration) • First asthma diagnosis record is <5 years from patient registration, AND first post-diagnostic inhaler prescription in >90 days from diagnosis (possible resurgence of asthma in remission)				
Proxies of asthma severity	Patients categorised by highest GINA Treatment Step in baseline year, using on 2018 guidelines for stepped therapy for asthma (GINA) (reference 21 in main paper)				

Variable	Description
Blood eosinophil count (BEC)	Mean count of blood eosinophils (10°cells/L) in baseline year (or mean of all counts in closest year within 5 years of baseline).
Lung function	Percent predicted PEF at index date. Categorised Percent predicted FEV ₁ at index date. Categorised
Total years of follow-up	Total follow-up time in years between dates of first and last eligible lung function records (calculated for FEV ₁ and PEF separately)
Diagnosis of COPD during follow-up	Any patient with a first diagnostic record for COPD during follow- up. Patients with a diagnosis of COPD before the index date or up to 5 years after the index date have been excluded from the eligible patient population.
Number of SABA prescriptions (asthma control)	Total number of SABA prescriptions in baseline year or first year of follow up (i.e. either in the year prior or following the index date) – whichever is the greater number.
Time-va	rying variables measured during follow-up
Maintenance oral corticosteroids	Cumulative sum of prescriptions up until end of follow up as a proportion of total years of follow up
ICS	Mean annualised dosage of inhaled corticosteroids in mg up until end of follow up (includes ICS-only inhalers and ICS in combination with long-acting beta agonist inhalers). Categorised into terciles: Lowest tercile (up to 53726.8 mg/yr) Middle tercile (>53726.8 to 169368.4mg/yr) Highest tercile (>169368.4mg/yr)
Other maintenance therapy	Cumulative sum of prescriptions up until the end of follow up as a proportion of total years of follow up for LABA, LAMA, LTRA, anti-IL-5, anti-IgE and anti-IL-13 medications.
SABA prescriptions	Cumulative sum of short acting beta agonist prescriptions up until the end of follow up as a proportion of total years of follow up
Smoking status	Categorised at the end of follow up as: -never smoker, -variable smoker, -continuous smoker -smoking status unknown

15 EMR: Electronic Medical Record; FEV₁; forced expiratory volume in one second; GINA: Global Initiative

16 for Asthma; ICS: inhaled corticosteroid; LABA: long-acting β_2 -agonist; LAMA: long-acting muscarinic

antagonist; LTRA: leukotriene receptor antagonist; PEF: peak expiratory flow rate; SABA: short acting

18 β_2 agonist

17

Smoothing of Lung Function Trajectories

PEF and FEV₁ vary considerably over time, may be measured using different instruments, and can show periods of rapid decline and recovery, which can be difficult to differentiate from the underlying lung function trajectory (i.e contribute significant 'noise' to analysis models). This inherent variability was accounted for by (i) smoothing and (ii) excluding lung function values that were 14 days wither side of an exacerbation. Smoothing was achieved by taking the highest eligible readings of absolute and % predicted lung function readings within each 12-month period for PEF or 6-month period for FEV₁, starting from the index date. By taking the highest value the aim was to mimic the effect of analysing a dataset containing readings taken during times of 'normal/best' lung function.

Estimation of lung function trajectory: a discussion of different models

Our first key assumption, that a linear model is able to appropriately characterise lung function trajectory is in line with other published studies of lung function trajectory in asthma and COPD patients.[2–4] An alternative quadratic model (including time and time) was considered, particularly for younger participants (as lung function peaks in early adulthood (18-25 years) and declines thereafter). However, a comparison of the information criteria (AIC and BIC) showed that the differences between linear and quadratic models of the study population were small and not consistent between PEF and FEV₁ trajectories; quadratic models were negligibly better (AIC: 8686422 BIC: 8686479) for PEF (L) and the linear model was negligibly better (AIC: 47046.24 BIC: 47091.2) for FEV₁ volume. Similar results were observed for % predicted PEF and FEV₁.

Our second assumption was that the data we were modelling was normal. Both baseline and follow-up lung function distributions did not appear to deviate significantly from normal.

Results

Supplemental material

S-Table 2: Correlation between FEV₁ and PEF (4 different significance tests) in a subset of 6083 patients with 25,359 PEF and FEV₁ test results measured on the same dates

Objective	Correlation between:	Coefficient (95% CI) p (change in dependent variable for unit increase in predictor)	R_square	Interpretation
Relationship between absolute FEV ₁ and PEF	PEF (predictor) and FEV ₁ (outcome variable)	+2.7mL (2.6, 2.8) p<0.001	0.7	Significantly correlated, predictor explains most of variation in outcome
Change in relationship between PEF and FEV ₁ over time	PEF * time (predictor) and FEV ₁ (outcome variable)	-0.000005 (-000012, 0.000002) p = 0.131	0.7	No significant change in relationship between FEV ₁ and PEF over time, Model explains most of variation in outcome

CI: confidence interval; FEV1: forced expiratory volume in one second; PEF: peak expiratory flow rate

S-Table 3: Additional characteristics of 109,182 patients in the PEF cohort – overall and by annual exacerbation rate (AER)

	Overall	AER 0/yr	AER >0-1/yr	AER >1-2/yr	AER >2/yr
Patient characteristics	(n=109,182)	(n=44,107)	(N=60,927)	(N=3,236)	(N=912)
	Baseli	ine lung function	<u>!</u>		!
Mean baseline PEF in L/min, (SD)	441.0 (107.0)	440 (106.8)	430.0 (104.5)	393.0 (106.8)	385.0 (102.2)
	V	ital statistics			
Aged 18-24 years, N (%)	16482 (15)	8228 (19)	7954 (13)	235 (7)	65 (7)
Aged 25-39 years, N (%)	32892 (30)	14490 (33)	17471 (29)	727 (22)	204 (22)
Aged 40+ years, N (%)	59808 (55)	21389 (48)	35502 (58)	2274 (70)	643 (71)
Median BMI at baseline (IQR) ^a	27.0 (24.0-30.9)	26.3 (23.5-29.9)	27.5 (24.3-31.6)	28.1 (24.6-32.6)	28.1 (24.4-32.9)
% Insufficient data to calculate BMI N (%)	3892 (3.6)	1970 (4.5)	1803 (3.0)	99 (3.1)	20 (2.2%)
Missing recent/no eosinophil data b N (%)	68485 (62.7)	29029 (65.8)	37129 (60.94)	1812 (56.0)	515 (56.5)
	Asthma	status at baseline			
age of onset of asthma >30yrsc, N (%)	54464 (49.9)	19970 (45.3)	32150 (52.8)	1857 (57.4)	487 (53.4)
Missing date of asthma diagnosis N (%)	15765 (14.4)	6503 (14.7)	8663 (14.2)	462 (14.3)	137 (15.0)
Median annual exacerbation rate (IQR)	0.08 (0.0-0.25)	0.00 (0.00)	0.18 (0.1-0.35)	1.33 (1.17-1.6)	2.55 (2.25-3.13)
	Sn	noking status			
Smoking status during follow-upd					
Non-smoker, n (%)	35759 (32.8)	15865 (36.0)	18751 (30.8)	885 (27.4)	258 (28.3)
Sustained ex-smoker, n (%)	23470 (21.5)	9180 (20.8)	13348 (21.9)	742 (22.9)	200(21.9)
Intermittent smoker, n (%)	20020 (18.3)	7184 (16.3)	11945 (19.6)	683 (21.1)	208 (22.8)
Sustained smoker, n (%)	5622 (5.2)	2435 (5.5)	3036 (5.0)	114 (3.5)	37 (4.1)
No smoking data recorded in follow-up period, n (%)	24311 (22.3)	9443 (21.4)	13847 (22.7)	812 (25.1)	209 (22.9)

	Overall	AER 0/yr	AER >0-1/yr	AER >1-2/yr	AER >2/yr
Patient characteristics	(n=109,182)	(n=44,107)	(N=60,927)	(N=3,236)	(N=912)
Asthma prescriptions (control/severity)					
Mean ICS dosage/year categorisede					
lowest tercile ICS (0-147.1 mcg/day), n (%)	37652 (34.5)	20950 (47.5)	16488 (27.1)	181 (5.6)	33 (3.6)
medium tercile ICS (147.1-463.7 mcg/day, n (%)	37770 (34.6)	14693 (33.3)	22264 (36.5)	686 (21.2)	127 (13.9)
highest tercile (>463.7mcg), n (%)	33760 (30.9)	8464 (19.2)	22175 (36.4)	2369 (73.2)	752 (82.5)

AER: annual exacerbation rate; BMI: body mass index; ICS: inhaled corticosteroid; IQR: interquartile range; PEF: peak expiratory flow rate; SD: standard deviation

^aMost recent BMI recorded up to 10 yrs prior to baseline or up to 5 years after index date.

^bMost recent eosinophil reading within 5 years of baseline and up to 2nd year of follow-up

[°]See Appendix 2 for more information on calculation of age of onset of asthma

^dBaseline: Smoking status up to 10 years prior to baseline. Follow-up: Latest smoking status at baseline or during follow-up.

epatients were ranked by mean yearly ICS dosage in mg into 33.33% percentile groups. Bottom tercile ICS: 0-53,726.8 mg/yr; middle tercile ICS: >53,726.8 to 169,368.4 mg/yr; top tercile (>169,368.4 mg/yr)

S-Table 4: Characteristics of 10,943 patients in the FEV₁ cohort – overall and by annual exacerbation rate (AER)

Patient characteristics	Overall	AER 0/yr	AER >0-1/yr	AER >1-2/yr	AER >2/yr	
Distribution of patients N %	10943 (100)	2961 (27.1)	6730 (61.5)	940 (8.6)	312 (2.9)	
Baseline lung function						
Median years of follow-up (IQR)	8.1 (6.8 – 11.9)	7.4 (6.0-9.5)	8.5 (6.6-11.2)	8.5 (6.7-11.1)	8.2 (6.3-10.7)	
Mean baseline FEV ₁ in L/1s (SD)	2.2 (0.8)	2.5 (0.8)	2.2 (0.8)	1.9 (0.7)	1.8 (0.7)	
Mean baseline % predicted FEV ₁ (SD)	81.5 (20.7)	85.4 (19.0)	81.3 (20.7)	75.2 (22.4)	70.3 (22.6)	
Vital statistics					<u>.</u>	
Median age at baseline (IQR)	58 (48-66)	57 (46-66)	59 (48-67)	60 (50-68)	56 (48-66)	
Aged 18-39 years N (%)	1223 (11.2)	399 (13.5)	711 (10.6)	78 (8.3)	35 (11.2)	
Aged 40+ years N (%)	9720 (88.8)	2562 (6.5)	6019 (89.4)	862 (91.7)	277 (88.8)	
Male N (%)	4747 (43.4)	1517 (51.2)	2792 (41.5)	334 (35.5)	104 (33.3)	
Median BMI at baseline (IQR) ^a	28.0 (24.9-31.8)	27.6 (24.6-31.0)	28.1 (25.0-31.9)	28.3 (24.9-32.4)	28.3 (25-32.9)	
% Insufficient anthropometric data to calculate BMI N (%)	156 (1.43)	48 (1.6)	89 (1.3)	13 (1.4)	6 (1.9)	
Median eosinophil count at baseline cells/mm3 (IQR) ^b	225 (150-334)	216 (150-320)	225 (150-330)	249 (165-378)	288 (178-406)	
Missing/no recent eosinophil data ^b	3256 (29.7)	1019 (34.4)	1957 (29.1)	204 (21.7)	76 (24.4)	
	Asthma status at baseline					
Median age of onset of asthma (IQR)	51 (37-62)	51 (36-62)	52 (39-63)	50 (37-61)	44 (30-58)	
Age of onset of asthma >30yrs° N (%)	7657 (70.0)	(031 (68.6)	4786 (71.1)	70.3 (661)	57.4 (179)	

	AER 0/yr	AER >0-1/yr	AER >1-2/yr	AER >2/yr
1569 (14.3)	419 (14.2)	953 (14.2)	137 (14.6)	60 (19.3)
5.8 (0.0-14.1)	5.1 (0.0-13.5)	5.4 (0.0-13.7)	8.4 (1.4-16.9)	12.3 (4.0-21.0)
0 (0-0)	0 (0-0)	0 (0-0)	1 (0-2)	2 (1-4)
0.2 (0.0-0.6)	0.00 (0.0-0.0)	0.3 (0.1-0.5)	1.4 (1.2-1.7)	2.6 (2.3-3.2)
3516 (32.1)	536 (18.1)	2312 (34.4)	507 (53.9)	161 (51.6)
Si	moking status			
2393 (21.8)	694 (23.4)	1422 (21.1)	196 (20.9)	81 (26.0)
3674 (33.6)	1018 (34.4)	2226 (33.1)	327 (34.8)	(103 (33.0)
2247 (20.5)	577 (19.5)	1416 (21.0)	197 (21.0)	57 (18.3)
2629 (24.02)	672 (22.7)	1666 (24.8)	220 (23.4)	71 (22.8)
2146 (19.6)	637 (21.5)	1258 (18.7)	175 (18.6)	76 (24.4)
3376 (30.9)	960 (32.4)	2047 (30.4)	281 (30.0)	88 (28.2)
2357 (21.5)	526 (17.8)	1521 (22.6)	235 (25.0)	75 (24.0)
798 (7.3)	246 (8.3)	487 (7.2)	54 (5.7)	11 (3.5)
2266 (20.7)	592 (20.1)	1417 (21.1)	195 (20.7)	62 (19.9)
	5.8 (0.0-14.1) 0 (0-0) 0.2 (0.0-0.6) 3516 (32.1) Signature Sig	5.8 (0.0-14.1) 5.1 (0.0-13.5) 0 (0-0) 0 (0-0) 0.2 (0.0-0.6) 0.00 (0.0-0.0) 3516 (32.1) 536 (18.1) Smoking status 2393 (21.8) 694 (23.4) 3674 (33.6) 1018 (34.4) 2247 (20.5) 577 (19.5) 2629 (24.02) 672 (22.7) 2146 (19.6) 637 (21.5) 3376 (30.9) 960 (32.4) 2357 (21.5) 526 (17.8) 798 (7.3) 246 (8.3)	5.8 (0.0-14.1) 5.1 (0.0-13.5) 5.4 (0.0-13.7) 0 (0-0) 0 (0-0) 0 (0-0) 0.2 (0.0-0.6) 0.00 (0.0-0.0) 0.3 (0.1-0.5) 3516 (32.1) 536 (18.1) 2312 (34.4) Smoking status 2393 (21.8) 694 (23.4) 1422 (21.1) 3674 (33.6) 1018 (34.4) 2226 (33.1) 2247 (20.5) 577 (19.5) 1416 (21.0) 2629 (24.02) 672 (22.7) 1666 (24.8) 2146 (19.6) 637 (21.5) 1258 (18.7) 3376 (30.9) 960 (32.4) 2047 (30.4) 2357 (21.5) 526 (17.8) 1521 (22.6) 798 (7.3) 246 (8.3) 487 (7.2)	5.8 (0.0-14.1) 5.1 (0.0-13.5) 5.4 (0.0-13.7) 8.4 (1.4-16.9) 0 (0-0) 0 (0-0) 1 (0-2) 0.2 (0.0-0.6) 0.00 (0.0-0.0) 0.3 (0.1-0.5) 1.4 (1.2-1.7) 3516 (32.1) 536 (18.1) 2312 (34.4) 507 (53.9) Smoking status 2393 (21.8) 694 (23.4) 1422 (21.1) 196 (20.9) 3674 (33.6) 1018 (34.4) 2226 (33.1) 327 (34.8) 2247 (20.5) 577 (19.5) 1416 (21.0) 197 (21.0) 2629 (24.02) 672 (22.7) 1666 (24.8) 220 (23.4) 2146 (19.6) 637 (21.5) 1258 (18.7) 175 (18.6) 3376 (30.9) 960 (32.4) 2047 (30.4) 281 (30.0) 2357 (21.5) 526 (17.8) 1521 (22.6) 235 (25.0) 798 (7.3) 246 (8.3) 487 (7.2) 54 (5.7)

Patient characteristics	Overall	AER 0/yr	AER >0-1/yr	AER >1-2/yr	AER >2/yr
Median SABA prescriptions in baseline year (IQR)	3 (1-6)	2 (1-5)	3 (1-6)	4 (2-8)	7 (3-11)
Median SABA prescriptions/yr in follow-up period	2.9 (1.3-6.0)	1.9 (0.8-4.4)	3.0 (1.4-5.9)	5.1 (2.7-8.5)	6.7 (4.0-11.4)
Median ICS dosage/year over follow-up in mcg (IQR)	514.8 (220.5-965.0)	324.1 (104.8-645.4)	544.2 (249.9-960)	576.7 (997.0-1498.8)	1322.2 (785.1-1781.4)
Mean ICS dosage/year categorisede	•	•	•	•	
Lowest 2 terciles for ICS dose/yr (0-463.7mcg/day)	3073 (28.1)	973 (32.9)	952 (29 (1)	126 (13.4)	30 (7.1)
Highest tercile for ICS dose/yr (>463.7 mcg)	5880 (53.7)	1077 (36.4)	3744 (55.6)	777 (82.7)	282 (90.4)
Median OCS prescriptions/year over follow-up (IQR)	0.5 (0.2-1.3)	1 (1-2)	4 (2-7)	20 (14-32)	36 (26-60)
Asthma Severity: GINA Step at baseline ^f					
Step 0 (no prescriptions) (n)	1631 (14.9)	603 (20.4)	985 (14.6)	59 (6.3)	9 (2.9)
Step 1 (SABA only) (n)	1587 (14.5)	495 (16.7)	990 (14.7)	85 (9.0)	17 (5.5)
Step 2 (low dose ICS) (n)	2227 (20.4)	748 (25.3)	1351 (20.1)	107 (11.4)	21 (6.7)
Step 3 (low dose ICS+ LABA) (n)	2272 (20.8)	619 (20.9)	1441 (21.4)	158 (16.8)	29 (9.3)
Step 4 or 5 (med/high dose ICS+ LABA + add ons) (n)	3226 (29.5)	496 (16.8)	1963 (29.2)	531 (56.5)	236 (75.6)

^aMost recent BMI recorded up to 10 yrs prior to baseline or up to 5 years after index date.

AER: annual exacerbation rate; BMI: body mass index; COPD: chronic obstructive pulmonary disease; FEV₁; forced expiratory volume in one second; GINA: Global Initiative for Asthma; ICS: inhaled corticosteroid; IQR: inter-quartile range; LABA: long-acting β₂-agonist; OCS: oral corticosteroid; SABA: short acting β₂-agonist; SD: standard deviation

^bMost recent eosinophil reading within 5 years of baseline and up to 2nd year of follow-up

[°]See S-Table 1 for more information on calculation of age of onset of asthma

^dBaseline: Smoking status up to 10 years prior to baseline. Follow-up: Latest smoking status at baseline or during follow-up.

epatients were ranked by mean yearly ICS dosage in mg into 33.33% percentile groups. Bottom tercile ICS: 0-53,726.8 mg/yr; middle tercile ICS: >53,726.8 to 169,368.4 mg/yr; top tercile (>169,368.4 mg/yr)

fGINA step: Based on 2018 guidelines for stepped therapy for asthma (GINA). (see reference 21 in main paper)

S-Table 5: Overall impact of smoking status on lung function trajectory (multivariate model with continuous exacerbation rate, time, duration of follow-up and baseline BMI)

Smoking category	% predicted (95% CI) p value	PEF, L/min (95% CI) p-value					
Baseline smoking status							
Never smoker Comparison group							
Ex-smoker	-3.1% (1.2%, -7.3%) p=0.155 1.0 (-0.06, 2.07) p=0.						
Smoker	-11.7% (7.0%, 16.5%) p<0.0001	-0.5 (-1.7, 0.7) p=0.387					
	Follow-up smoking status	S					
Never smoker	Comparison group						
Sustained ex-smoker	5.0% (0.8%, 9.3%) p=0.020	1.3 (0.2, 2.4) p=0.016					
Mixed smoker/ex- smoker	-6.6% (-2.1%, 11.2%) p=0.004	-2.69 (-3.8, -1.5) p<0.0001					
Sustained smoker	-49.5% (-42.7%, -56.2%)	-6.2 (-7.9, -4.6) p<0.0001					

BMI: body mass index; CI: confidence interval; PEF: peak expiratory flow rate

S-Table 6. Adjusted PEF trajectories (L/min/year) by AER stratified by gender

Annual exacerbation rate	Decline in PEF, L/min/yr (95% CI)	Average difference in PEF, L/min/yr, decline between AER categories (95% CI; p-value)			
Males (N=29,056)					
0/yr	-1.65 (-1.85, -1.45)	reference			
>0-1/yr	-3.02 (-3.22, -2.82)	-1.37 (-1.58, -1.16) p<0.001			
>1-2/yr	-4.77 (-5.45, -4.09)	-3.12 (-3.8, -2.43) p<0.001			
>2/yr	-5.00 (-6.24, -3.77)	-3.35 (-4.59, -2.11) p<0.001			
	Females (N=4	13,548)			
0/yr	-3.87 (-3.99, -3.74)	reference			
>0-1/yr	-4.07 (-4.17, -3.96)	-0.20 (-0.33, -0.07)p =0.0027			
>1-2/yr	-5.14 (-5.47, -4.81)	-1.27 (-1.61, -0.93) p <0.001			
>2/yr	-5.49 (-6.12, -4.86)	-1.62 (-2.25, -0.99) p <0.001			

AER: annual exacerbation rate; CI: confidence interval; PEF: peak expiratory flow rate

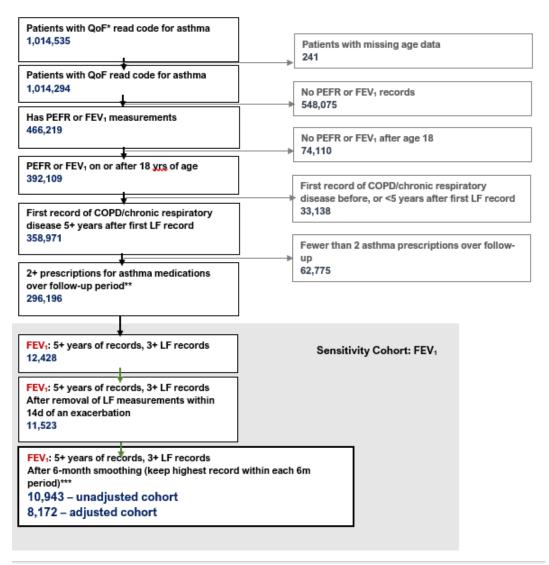
S-Table 7. adjusted FEV₁ trajectories (mL/yr) by AER stratified by gender

Annual exacerbation rate	Decline in FEV ₁ , mL/yr, (95% CI)	Average difference in FEV ₁ , mL/yr, decline between AER categories (95% CI), p-value					
	Males (n=3,508)						
0/yr	-22.2(-27.8, -16.7)	reference					
>0-1/yr	-25.4 (-30.5, -20.3)	-3.9 (-8.6, 0.8) p = 0.102					
>1-2/yr	-26.4 (-35.3, -17.6)	-4.9 (-13.5, 3.7) p = 0.264					
>2/yr	-15.8 (-30.8, -0.9)	5.7 (-9.2, 20.6) p = 0.454					
	Females (n=4,664)						
0/yr	-18.8 (-22.2, -15.4) p = 0	Reference					
>0-1/yr	-19.9 (-22.6, -17.2) p = 0	-1.1 (-4.3, 2) p = 0.486					
>1-2/yr	-22.5 (-27, -17.9) p = 0	-3.7 (-8.5, 1.2) p = 0.138					
>2/yr	-28.1 (-35.3, -20.9) p = 0	-9.3 (-16.8, -1.9) p = 0.014					

AER: annual exacerbation rate; CI: confidence interval; FEV1: forced expiratory volume in one second

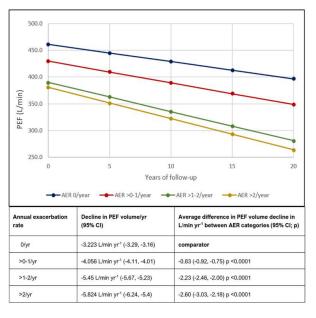
S-Table 8. Adjusted and unadjusted PEF trajectory (L/min/yr) by AER in patients with lung function records starting from 1990 and from 2005

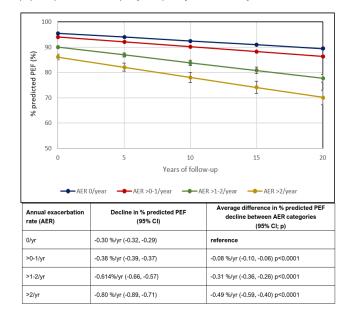
	Starting :	1990 to 2019	Starting 20	005 to 2019	
Annual exacerbation rate	PEF Decline, L/min/yr (95% CI)	Average PEF difference (L/min/yr) decline between AER categories (95% CI; p-value)	PEF Decline, L/min/yr (95% CI)	Average PEF difference(L/min/yr) decline between AER categories (95% CI; p-value)	
	PEF unadjus	ted (N=108,958)	PEF unadjust	ed (n=37,029)	
0/yr	-3.22 (-3.29, -3.16)	reference	-1.69 (-1.83, -1.55) p =0	reference	
>0-1/yr	-4.06 (-4.11, -4.01)	-0.84 (-0.92, -0.75) p = <0.001	-2.47 (-2.59, -2.35) p =0	-0.78 (-0.96, -0.59) p <0.001	
>1-2/yr	-5.45 (-67, -5.23)	-2.22 (-2.45, -2.00) p = <0.001	-4.21 (-4.74, -3.68) p =0	-2.52 (-3.07, -1.97) p <0.001	
>2/yr	-5.82 (-6.24, -5.41)	-2.60 (-3.02, -2.17) p = <0.001	-3.87 (-4.84, -2.89) p =0	-2.17 (-3.16, -1.19) p <0.001	
	PEF adjust	ed (N=72,576)	PEF adjuste	d (n=26,873)	
0/yr	-2.93 (-3.04, -2.81)	reference	-1.40 (-1.63, -1.17) p <0.001	reference	
>0-1/yr	-3.74 (-3.84, -3.64)	-0.81 (-0.93, -0.70) p = <0.001	-2.10 (-2.32, -1.88) p <0.001	-0.695 (-0.95, -0.44) p <0.001	
>1-2/yr	-5.05 (-5.38, -4.73)	-2.13 (-2.46, -1.80) p = <0.001	-3.60 (-4.36, -2.84) p <0.001	-2.197 (-2.96, -1.43) p <0.001	
>2/yr	-5.38 (-5.98, -4.78)	-2.46 (-3.06, -1.85) p = <0.001	-3.31 (-4.68, -1.98) p <0.001	-1.929 (-3.29, -0.57) p =0.0054	

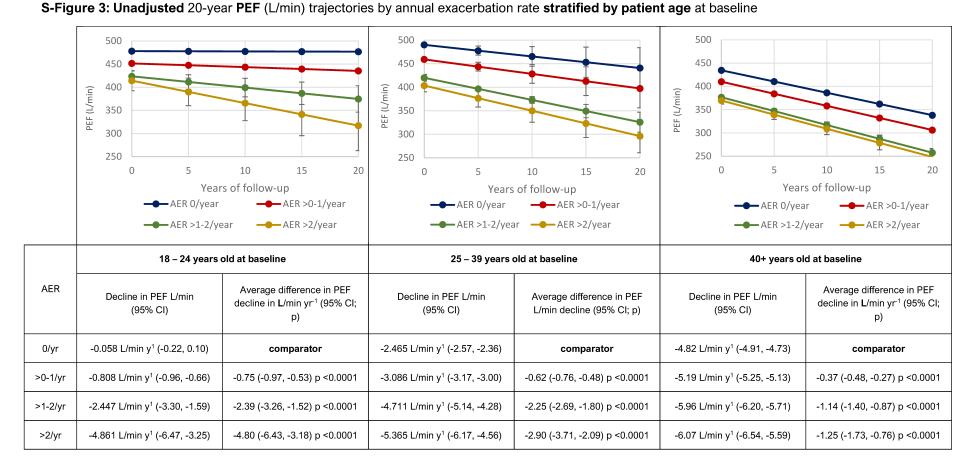

AER: annual exacerbation rate; CI: confidence interval; PEF: peak expiratory flow rate

S-Table 9 Adjusted and unadjusted FEV $_1$ trajectory (mL/yr) by AER in patients with lung function records starting from 1990

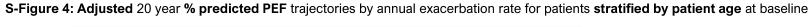
Annual exacerbation rate	Decline in FEV ₁ , mL/yr (95% CI)	Average difference in FEV ₁ , mL/yr, decline between AER categories (95% CI; p, value)
	Unadjusted (n=10,907)	
0/yr	-25.31 (-27.00, -23.61)	reference
>0-1/yr	-27.81 (-28.85, -26.76)	-2.50 (-4.49, -0.51) p = 0.0138
>1-2/yr	-29.56 (-32.34, -26.78)	-4.25 (-7.51, -0.99) p = 0.0105
>2/yr	-27.66 (-32.60, -22.73)	-2.60 (-7.57, 0.28) p = 0.3762
	Adjusted (n=8,169)	
0/yr	-20.2 (-23.3, -17.2)	reference
>0-1/yr	-21.8 (-24.4, -19.2)	-1.9 (-4.6, 0.9) p = 0.179
>1-2/yr	-23.4 (-27.8, -19.0)	-3.4 (-7.9, 1.1) p = 0.135
>2/yr	-23.8 (-31.0, -16.7)	-3.8 (-11, 3.4) p = 0.300

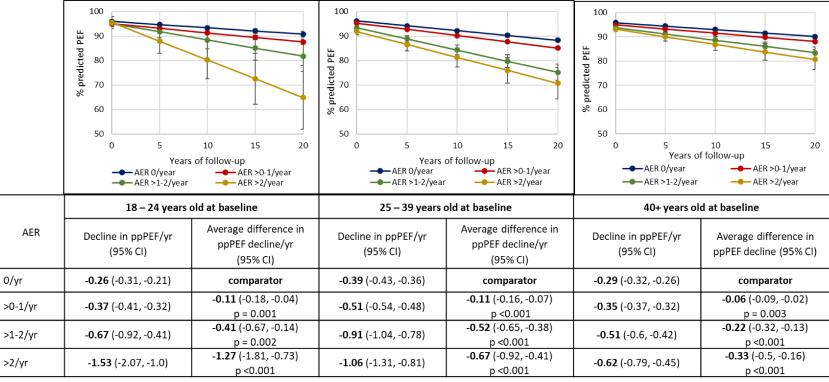

AER: annual exacerbation rate; CI: confidence interval; FEV1: forced expiratory volume in one second


S-Figure 1: Patient disposition for FEV₁ cohort

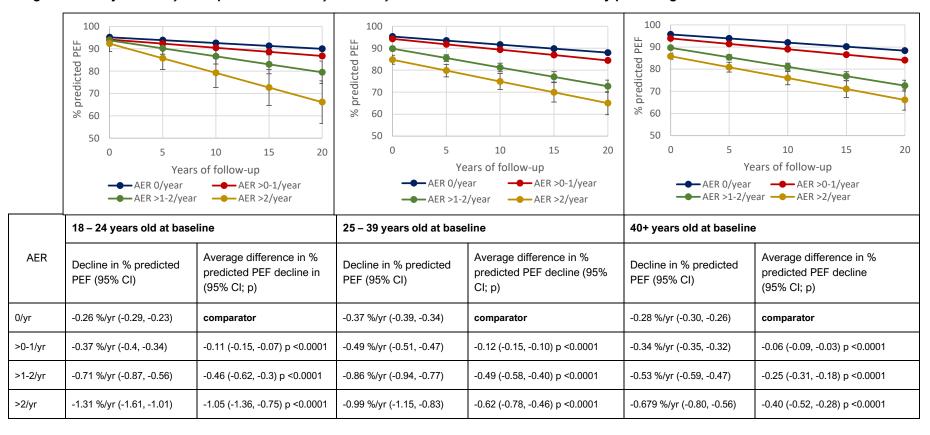

COPD: chronic obstructive pulmonary disease; FEV₁: forced expiratory volume in one second; LF: lung function; PEF: peak expiratory flow rate; QoF: Quality Outcomes Framework

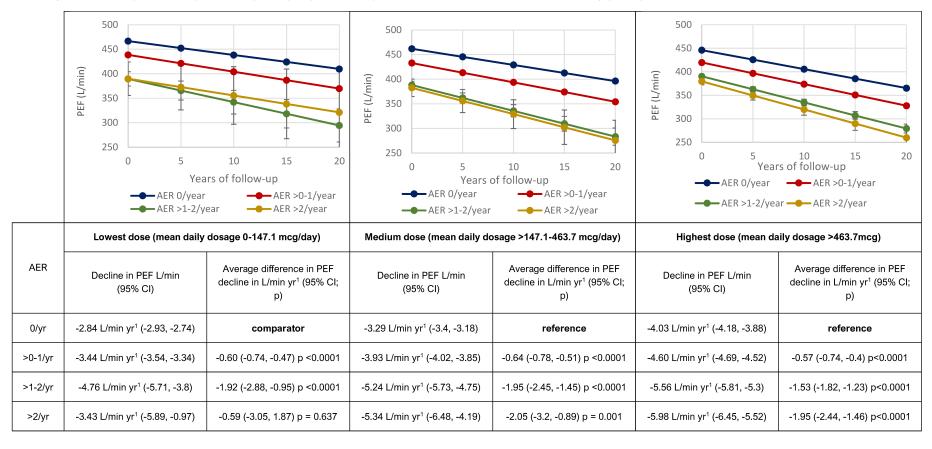
S-Figure 2: Unadjusted 20-year change in (A) PEF (L/min) and (B) % predicted (%/year) trajectories by annual exacerbation rate



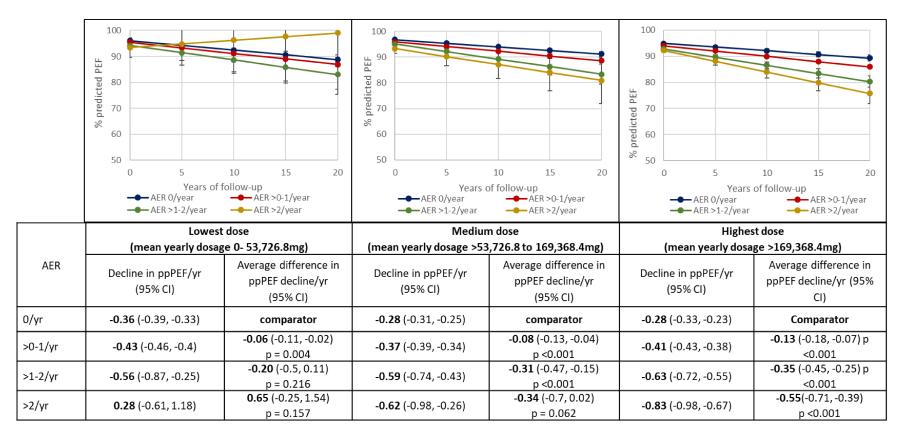

AER: annual exacerbation rate; CI: confidence interval PEF: peak expiratory volume

AER: annual exacerbation rate; CI: confidence interval; PEF: peak expiratory flow rate

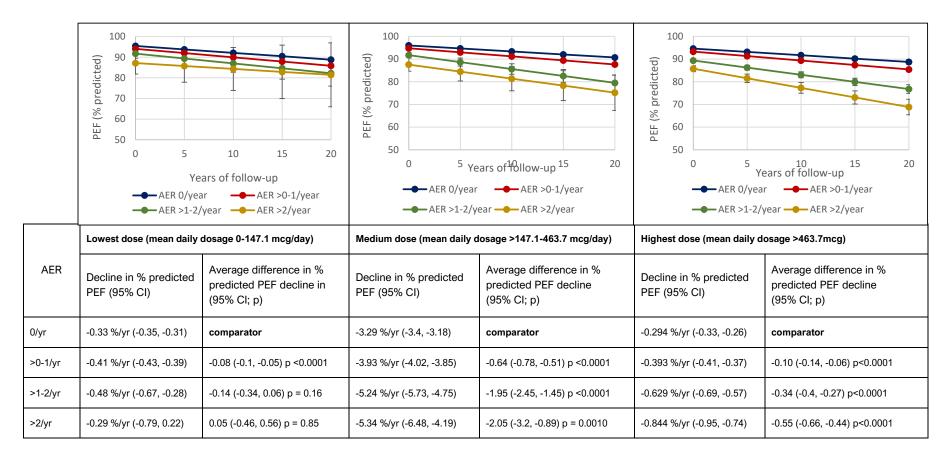

Supplemental material


AER: annual exacerbation rate; CI: confidence interval; PEF: peak expiratory flow rate; ppPEF: percent predicted peak expiratory flow rate

S-Figure 5: Unadjusted 20-year % predicted PEF trajectories by annual exacerbation rate stratified by patient age at baseline


AER: annual exacerbation rate; CI: confidence interval; ppPEF: percent predicted peak expiratory flow

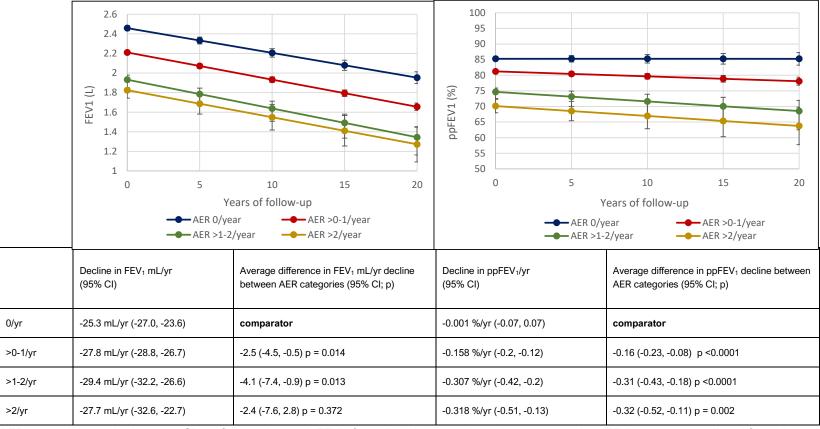
S-Figure 6: Unadjusted 20-year PEF (L/min) trajectories by annual exacerbation rate stratified by yearly ICS dose

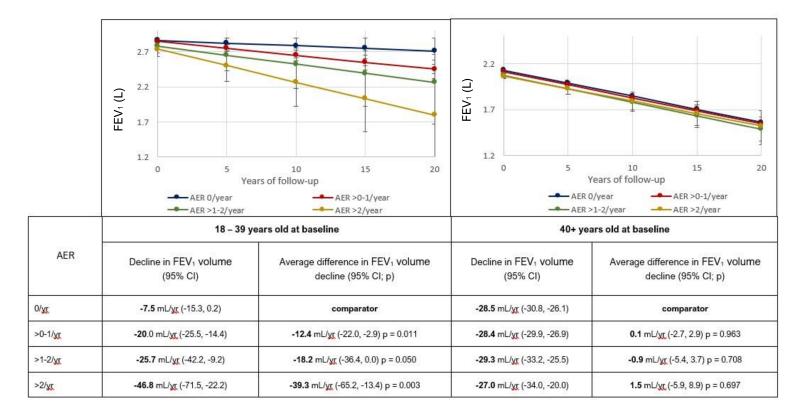

AER: annual exacerbation rate; CI: confidence interval; ppPEF: percent predicted peak expiratory flow

S-Figure 7: adjusted 20-year % predicted PEF by annual exacerbation rate for patients stratified by mean yearly ICS dose

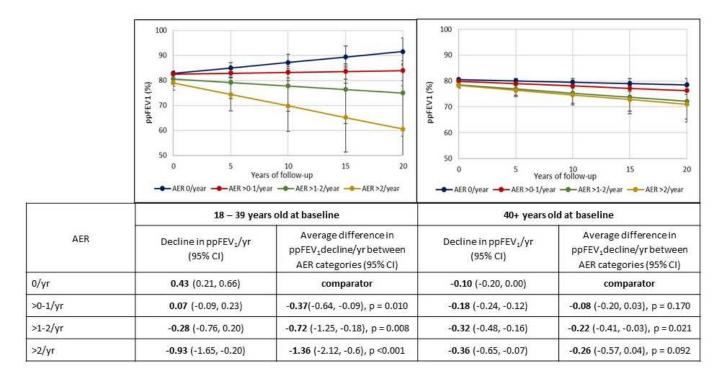
AER: annual exacerbation rate; CI: confidence interval; PEF: peak expiratory flow rate; ppPEF: percent predicted peak expiratory flow rate

S-Figure 8: Unadjusted 20-year % predicted PEF trajectories by annual exacerbation rate stratified by yearly ICS dose


AER: annual exacerbation rate; CI: confidence interval; ppPEF: percent predicted peak expiratory flow

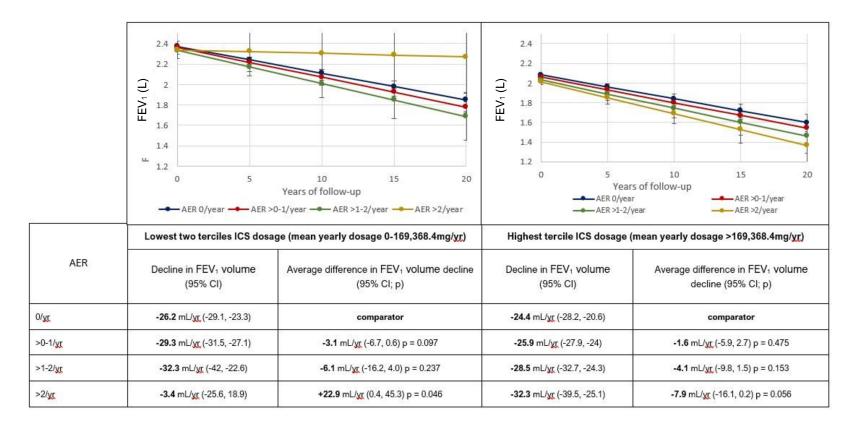

AER: annual exacerbation rate; CI: confidence interval; ppFEV₁: percent predicted forced expiratory volume in one second

S-Figure 10: unadjusted change in 20-year FEV₁ (L/1 sec) and % predicted trajectories by annual exacerbation rate (n=10,943)

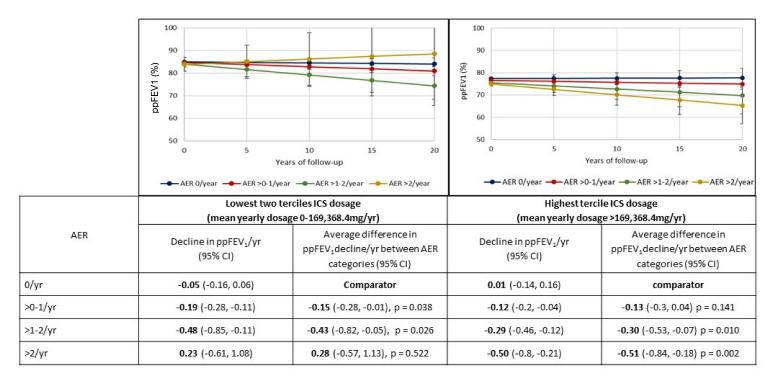


AER: annual exacerbation rate; CI confidence interval; FEV₁: forced expiratory volume in one second; ppFEV₁: percent predicted forced expiratory volume in one second

S-Figure 11: Adjusted 20-year FEV₁ (L) trajectories by annual exacerbation rate stratified by patient age at baseline



AER: annual exacerbation rate; CI: confidence interval; ppFEV₁: percent predicted forced expiratory volume in one second



AER: annual exacerbation rate; CI: confidence interval; ppFEV₁; percent predicted forced expiratory volume in one second

S-Figure 13: Adjusted 20-year FEV₁ (L) trajectories by annual exacerbation rate stratified by yearly ICS dose

AER: annual exacerbation rate; CI: confidence interval; ppFEV₁: percent predicted forced expiratory volume in one second:

AER: annual exacerbation rate; CI: confidence interval; ICS: inhaled corticosteroid; ppFEV₁; percent predicted forced expiratory volume in one second

References

- 1 Optimum Patient Care Research Database (OPCRD. optimumpatientcare.org/databaseoverview/ (accessed 5 Jul 2019).
- 2 Bai TR, Vonk JM, Postma DS, *et al.* Severe exacerbations predict excess lung function decline in asthma. *Eur Respir J* 2007;**30**:452–6. doi:10.1183/09031936.00165106
- 3 Coumou H, Westerhof GA, de Nijs SB, *et al.* Predictors of accelerated decline in lung function in adult-onset asthma. *Eur Respir J* 2018;**51**:1701785. doi:10.1183/13993003.01785-2017
- 4 Newby C, Agbetile J, Hargadon B, *et al.* Lung function decline and variable airway inflammatory pattern: longitudinal analysis of severe asthma. *J Allergy Clin Immunol* 2014;**134**:287–94. doi:10.1016/j.jaci.2014.04.005