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ABSTRACT
Background Considerable clinical heterogeneity 
in idiopathic pulmonary fibrosis (IPF) suggests the 
existence of multiple disease endotypes. Identifying 
these endotypes would improve our understanding of 
the pathogenesis of IPF and could allow for a biomarker- 
driven personalised medicine approach. We aimed to 
identify clinically distinct groups of patients with IPF that 
could represent distinct disease endotypes.
Methods We co- normalised, pooled and clustered 
three publicly available blood transcriptomic datasets 
(total 220 IPF cases). We compared clinical traits across 
clusters and used gene enrichment analysis to identify 
biological pathways and processes that were over- 
represented among the genes that were differentially 
expressed across clusters. A gene- based classifier 
was developed and validated using three additional 
independent datasets (total 194 IPF cases).
Findings We identified three clusters of patients 
with IPF with statistically significant differences in 
lung function (p=0.009) and mortality (p=0.009) 
between groups. Gene enrichment analysis implicated 
mitochondrial homeostasis, apoptosis, cell cycle and 
innate and adaptive immunity in the pathogenesis 
underlying these groups. We developed and validated a 
13- gene cluster classifier that predicted mortality in IPF 
(high- risk clusters vs low- risk cluster: HR 4.25, 95% CI 
2.14 to 8.46, p=3.7×10−5).
Interpretation We have identified blood gene 
expression signatures capable of discerning groups of 
patients with IPF with significant differences in survival. 
These clusters could be representative of distinct 
pathophysiological states, which would support the 
theory of multiple endotypes of IPF. Although more 
work must be done to confirm the existence of these 
endotypes, our classifier could be a useful tool in patient 
stratification and outcome prediction in IPF.

INTRODUCTION
Idiopathic pulmonary fibrosis (IPF) is a complex, 
ultimately fatal disease, characterised by progres-
sive scarring of the lungs, with a median survival 
of 3–5 years postdiagnosis.1 2 Currently, there is 
no cure for IPF and the two drugs approved for 
treatment (nintedanib and pirfenidone) only slow 
disease progression, do not work in all patients and 
are often not well tolerated.3 4 The clinical course of 
IPF is highly variable with slow progression in some 

patients, rapid progression in others, while many 
experience a slowly progressive course interspersed 
with periods of rapid lung function deterioration.1 
It is plausible that these clinical phenotypes could 
reflect different disease endotypes.

Disease endotypes are subtypes of a disease as 
defined by a particular pathophysiological mecha-
nism. It has been speculated that distinct endotypes 
of IPF exist,5 6 as in asthma and lung cancer,7 8 
although these are not yet well understood. Iden-
tification of endotypes would greatly increase our 
understanding of the behaviour and heteroge-
neity of the disease, and may allow for the devel-
opment of biomarkers and more precise, tailored 
approaches to treatment.

Transcriptomic data can be used to define disease 
endotypes, as similar transcriptomic profiles in 
affected individuals may reflect common underlying 
biological mechanisms. Previous transcriptomic 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ The clinical course of idiopathic pulmonary 
fibrosis (IPF) is highly heterogeneous, which 
has prompted speculation that the disease may 
consist of multiple ‘endotypes’.

 ⇒ Gene expression profiles could be used to 
identify these endotypes but previous studies 
have been limited by sample size, ability to 
validate and clinical interpretation.

WHAT THIS STUDY ADDS
 ⇒ By combining and clustering multiple gene 
expression datasets, we identified three distinct 
clusters of patients with IPF with significant 
clinical differences between groups, as well as 
differences in gene expression that implicated 
mitochondrial homeostasis, apoptosis, cell cycle 
and innate and adaptive immunity.

 ⇒ We went on to develop a 13- gene cluster 
classifier that was able to predict mortality in 
two validation cohorts of patients with IPF.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE AND/OR POLICY

 ⇒ Our findings support the hypothesis of multiple 
endotypes of IPF and highlight distinct 
underlying biological mechanisms that could 
inform a precision medicine strategy for IPF.
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Interstitial lung disease

analyses of patients with cancer have been particularly successful 
in defining clinically significant patient subgroups, which have 
led to improvements in treatment.9 10 Previous studies in patients 
with IPF have used transcriptomic or limited biomarker data 
with supervised clustering approaches to develop binary signa-
tures predictive of disease progression, measured using mortality 
or transplant- free survival.11 12 Studies using unsupervised 
clustering approaches to discover disease endotypes have been 
limited by sample size,13 ability to validate13 14 and clinical inter-
pretation.14 However, these studies have consistently reported 
association of inflammatory genes,13 in particular those associ-
ated with T cell activation11 and differentiation,14 with worse 
outcomes.

In this study, we aimed to conduct the largest unsupervised 
clustering analysis of available transcriptomic datasets to date, 
with independent validation, to identify clinically distinct groups 
of patients with IPF. We hypothesised that these groups could 
represent individuals with different endotypes of IPF. Rather 
than undertake single dataset analyses, we co- normalised and 
pooled multiple datasets together to increase the sample size and 
enhance statistical power. Additionally, we used classification 
to develop a method to accurately assign additional individuals 
with IPF to one of these groups. This classifier displayed the 
ability to predict survival in IPF and so we then compared the 
performance of our classifier in independent validation datasets 
to a previous method of outcome prediction in IPF.

METHODS
Collection of publicly available data
The design of our study is shown in figure 1. First, we reviewed 
the IPF datasets available on the Gene Expression Omnibus15 and 
systematically selected several suitable datasets of gene expres-
sion data measured from whole blood (see online supplemental 
file for details). The datasets were then assigned to either the 
discovery stage or the validation stage (online supplemental file). 

Cohorts used in the discovery stage must have included healthy 
controls to enable the data co- normalisation. The methods used 
to preprocess the transcriptomic data before the co- normalisa-
tion are described in the online supplemental file.

Discovery stage
As the discovery datasets originated from different studies and 
the transcriptomic data were collected using varying platforms, 
there would have been considerable technical (non- biological) 
differences in gene expression between them. As such, the 
discovery datasets required adjustment before they could be 
combined and clustered. We co- normalised the discovery 
datasets using the COmbat CO- Normalisation Using conTrols 
(COCONUT) method,16 using R V.4.0.0 and the ‘COCONUT’ 
package V.1.0.2 (online supplemental file). All healthy control 
subjects were then removed from further analysis.

We used R V.3.4.0 and the Combined Mapping of Multiple 
clUsteriNg ALgorithms (COMMUNAL)17 package V.1.1.0 
to identify the optimal number of clusters within the pooled, 
co- normalised data. COMMUNAL integrates data from multiple 
clustering algorithms across a range of genes and evaluates 
the validity of each number of clusters using multiple validity 
measures. Details on the configuration of COMMUNAL used in 
this study and the process used to determine the optimal cluster 
assignment can be found in the online supplemental file. Once 
an optimal cluster assignment was chosen, principal components 
analysis and heatmaps were used to visualise the separation of 
the clusters. Unclustered samples were excluded from further 
analysis.

Clinical and demographic characteristics of clustered subjects 
were compared using χ2 tests for count data, analysis of variance 
for non- skewed continuous data, Kruskal- Wallis tests for skewed 
continuous data and survival analysis methods for time- to- event 
data (online supplemental file). Gene enrichment analysis was 
performed in R V.4.0.0 with the in- house ‘metabaser’ package 
(database V.20.3, package V.4.2.3) to highlight biological mech-
anisms that were significantly enriched for the subjects in each 
cluster (online supplemental file).

We developed a gene expression- based classifier to assign new 
individuals with IPF to one of the clusters using only the most 
informative differentially expressed genes. This classifier was 
designed following the approach described by Sweeney et al in 
their study of bacterial sepsis (online supplemental file).18

Validation stage
The classifier was used to assign all subjects with IPF in each 
validation dataset to a discovery cluster. Phenotypic traits were 
compared across clusters, as in the discovery stage (online 
supplemental file).

We compared the classifier’s performance at predicting survival 
in IPF to a previous transcriptomic prognostic biomarker for IPF 
by Herazo- Maya et al.19 Each of the validation subjects with 
survival data available were assigned into a ‘high- risk’ or ‘low- 
risk’ group (in terms of mortality or requiring a lung transplant) 
using the method described by Herazo- Maya et al, the Scoring 
Algorithm for Molecular Subphenotypes (SAMS). For this we 
used as many of the genes in their signature as were present in the 
validation datasets. Similarly, each subject was assigned into one 
of our discovery clusters, which were each classed as low risk/
high risk based on the discovery stage findings. Survival analysis 
methods were used to determine which method performed best 
at predicting survival (online supplemental file).

Figure 1 A flow chart showing the design of our study. COCONUT, 
COmbat CO- Normalisation Using conTrols; COMMUNAL, Combined 
Mapping of Multiple clUsteriNg ALgorithms; IPF, idiopathic pulmonary 
fibrosis.
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Interstitial lung disease

RESULTS
Collection of publicly available data
Six independent whole blood gene expression datasets were 
selected for inclusion in the analysis (online supplemental figure 
E1). Summary statistics for all subjects are shown in table 1.

Discovery stage
All three discovery stage datasets were microarray- based (online 
supplemental table E1). There were expression levels measured 
for 9371 common genes across the three datasets, which 
consisted of a total of 220 subjects with IPF and 95 healthy 
control subjects. There were no significant differences in age 
or sex between healthy controls across the three studies (online 
supplemental table E2).

Prior to COCONUT co- normalisation, the data from the three 
cohorts were entirely separated in high- dimensional space due to 
technical differences between the studies (figure 2A). Whereas 
after COCONUT (figure 2B), the data were overlapping in 
high- dimensional space, indicating that the technical differences 
between datasets had been reduced and that the co- normalised 
data were suitable for clustering.

COMMUNAL was run on the co- normalised data and the 
resulting optimality map is shown in online supplemental figure 
E2. The clustering assignment with 3 clusters using 2500 genes 
was chosen as the optimal assignment (online supplemental file), 
with 64 subjects assigned to cluster 1, 95 assigned to cluster 2, 
37 assigned to cluster 3 and 24 (10.4%) that were unclustered 
(figure 2C and online supplemental figure E3).

Table 1 Summary information on the publicly available datasets that were included in this study, as well as summary statistics for all individuals 
whose data were included in the analysis.

Discovery stage Validation stage

GEO accession number GSE38958 GSE33566 GSE93606 GSE132607 GSE27957 GSE28042

Reference Huang et al34 Yang et al35 Molyneaux et al36 * †11 †11

Country USA USA UK USA USA USA

Disease status IPF Control IPF Control IPF Control IPF IPF IPF

Sample size 70 45 93 30 57 20 74 45 75

Age (years, SD) 68.2 (7.2) 69.3 (9.3) 67.2 (11.4) 62.4 (14.3) 67.4 (8.0) 66.0 (10.6) 66.6 (7.6) 67.1 (8.2) 68.9 (8.1)

Sex (% male) 82.6% 60.0% 65.6% 46.7% 66.7% 60.0% 70.3% 88.9% 69.3%

Ancestry (% European) 82.8% 71.1% Unknown Unknown Unknown Unknown 94.6% 82.2% 97.3%

FVC % predicted (SD) 62.4 (15.0) Unknown 62.0 (28.8) Unknown 72.2 (20.3) Unknown 69.7 (18.4) 60.6 (14.3) 65.4 (16.7)

DLCO % predicted (SD) 43.3 (18.7) Unknown 52.1 (27.9) Unknown 39.2 (14.1) Unknown 45.6 (15.4) 43.4 (17.7) 48.9 (18.6)

Mortality (%) Unknown Unknown Unknown Unknown 40.4% Unknown Unknown 37.8% 32.0%

MUC5B genotype (% GG) Unknown Unknown 28.0% 53.8% 40.0% Unknown 18.8% Unknown Unknown

MUC5B genotype (% GT) Unknown Unknown 66.0% 42.3% 50.0% Unknown 78.1% Unknown Unknown

MUC5B genotype (% TT) Unknown Unknown 6.0% 3.8% 10.0% Unknown 3.1% Unknown Unknown

Immunosuppressive 
therapy (%)

Unknown Unknown 0.0% Unknown 0.0% Unknown Unknown 4.4% 14.7%

*As of March 2022, the dataset with GEO accession number GSE132607 had not been associated with any published study.
†The datasets with GEO accession numbers GSE27957 and GSE28042 originated from the same study,11 where the data in GSE27957 were used in discovery and the data in 
GSE28042 were used as independent validation data.
DLCO, diffusing capacity of lung for carbon monoxide; GEO, Gene Expression Omnibus; MUC5B genotype, genotype for the MUC5B promoter polymorphism rs35705950.

Figure 2 Plots of the first two principal components of the gene expression data for the idiopathic pulmonary fibrosis samples prior to co- 
normalisation and stratified by original study (A), post co- normalisation and stratified by original study (B) and post co- normalisation stratified by 
cluster (C). The x- axis represents the first principal component of the data and the y- axis represents the second principal component of the data.
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Interstitial lung disease

With all studies combined and unclustered individuals 
removed (table 2), there was a statistically significant difference 
in average predicted diffusing capacity of the lung for carbon 
monoxide (DLCO) across clusters (p=0.009). Subjects in cluster 
1 had a similar median predicted DLCO to those in cluster 3, 
whilst subjects in cluster 2 had the greatest median predicted 
DLCO, indicating that these individuals had relatively preserved 
lung function. Additionally, there was a significant difference in 
average score from the gender, age and physiology (GAP) index 
for IPF mortality (p=0.006),20 with those in cluster 1 having 
the greatest GAP score and those in cluster 2 having the lowest 
average GAP score. There was a statistically significant differ-
ence in mortality between clusters 2 and 3, with death observed 
for 25% of subjects in cluster 2 and 67% of subjects in cluster 
3 (p=0.009). Furthermore, those in cluster 3 had consistently 
poorer survival over time than those in cluster 2 (online supple-
mental figure E4). A Cox proportional hazards (PH) model esti-
mated that the HR between clusters 2 and 3 was 3.59 (95% CI 
1.40 to 9.19, p=0.008), and so at any follow- up time, subjects 
in cluster 3 were estimated to be 3.59 times as likely to die as 
subjects in cluster 2. The clinical and demographic traits of the 
subjects in each cluster stratified by original study are shown in 
online supplemental table E3.

Gene enrichment analysis revealed that cluster 1 was signifi-
cantly enriched for biological mechanisms relating to metabolic 
changes, including electron transport and cellular respiration 
(online supplemental table E4 and figure E5). Cluster 2 was 
significantly enriched for biological processes and pathways 
relating to gene regulation, DNA repair, cell cycle and apoptosis 
(online supplemental table E5 and figure E6), while cluster 3 was 
significantly enriched for terms relating to the immune response 
(online supplemental table E6 and figure E7). In addition, the 
genes assigned to clusters 2 and 3 were each found to be statis-
tically overconnected (in terms of direct gene regulation) to a 
significant number of genes that have been previously implicated 
in the development of IPF (see the ‘Gene enrichment analysis’ 
section in the online supplemental file for more details).

We used the pooled, co- normalised gene expression data for 
all 196 subjects who were successfully clustered in the discovery 
analysis to train a gene expression- based cluster classifier (online 
supplemental file). The classifier (online supplemental tables E7 
and E8) used expression data from 13 genes and was able to 
accurately reassign 99.0% of discovery subjects (online supple-
mental table E9).

Validation stage
There were 194 subjects with IPF across the three validation 
cohorts. Expression levels for all 13 genes used in the classi-
fier were available in all three validation cohorts. We used the 
classifier to assign each individual to a cluster and compared 
phenotypic traits across clusters (table 2). As in the discovery 
stage, there were statistically significant differences in mortality 
between clusters (p=0.001) and those in cluster 2 had the best 
survival over time (figure 3). Additionally, individuals in cluster 
2 had the highest average DLCO, although the difference in 
DLCO between validation clusters was not statistically significant 
(p=0.069). Cox PH models (online supplemental table E10) 
estimated that at any follow- up time, an individual in cluster 1 
was 3.80 times more likely to die than an individual in cluster 2 
(95% CI 1.78 to 8.12, p=0.001), while an individual in cluster 3 
was 5.05 times more likely to die than an individual in cluster 2 
(95% CI 2.24 to 11.35, p=9.1×10−5). However, the difference 
in survival over time between clusters 1 and 3 was not statisti-
cally significant (HR 1.47 (95% CI 0.67 to 3.22, p=0.341).

Finally, we compared the performance of our classifier at 
predicting survival in IPF with SAMS, a method used by Herazo- 
Maya et al to predict outcome in IPF using a 52- gene signa-
ture.19 There were no common genes between the classifier and 
the 52- gene signature, although many were highly correlated 
in the validation subjects (online supplemental figure E8). The 
subjects in the GSE27957 and GSE28042 validation cohorts 
(GSE132607 did not report mortality) were each classed as ‘high 
risk’ or ‘low risk’ using both gene expression- based methods. 

Table 2 Comparison of clinical and demographic traits of clustered subjects in the discovery and validation stages

Discovery stage (n=196) Validation stage (n=194)

Cluster 1 Cluster 2 Cluster 3 P value N used Cluster 1 Cluster 2 Cluster 3 P value N used

n subjects in cluster 64 95 37   52 101 41   

Age (years) (mean, SD) 67.8 (8.9) 66.9 (10.2) 68.8 (9.4) 0.592 188 67.1 (8.1) 68.5 (7.6) 66.2 (8.6) 0.239 194

Male (%) 52 (81.3%) 66 (69.5%) 23 (62.2%) 0.091 196 38 (73.1%) 72 (71.3%) 34 (82.9%) 0.347 194

European ancestry (%) 17 (81.0%) 29 (82.9%) 3 (75.0%) 0.883 60 51 (98.1%) 91 (90.1%) 38 (92.7%) 0.196 194

Ever smoker (%) NA 15 (62.5%) 18 (78.3%) 0.389 47 11 (57.9%) 21 (60.0%) 17 (85.0%) 0.114 74

Death observed during study (%) NA 6 (25.0%) 16 (66.7%) 0.009 48 16 (48.5%) 13 (19.7%) 12 (57.1%) 0.001 120

FVC % predicted (median, IQR) 63.0 (35.0) 70.5 (30.1) 60.1 (23.4) 0.342 154 64.3 (23.6) 65.0 (24.3) 63.1 (15.3) 0.467 193

DLCO % predicted (median, IQR) 35.0 (30.0) 45.0 (29.2) 34.4 (17.3) 0.009 133 42.1 (26.4) 48.2 (21.1) 43.4 (20.3) 0.069 194

FEV1 % predicted (median, IQR) NA 74.9 (23.1) 65.4 (22.7) 0.216 48 74.8 (21.7) 75.2 (22.2) 75.4 (17.7) 0.913 75

GAP index (mean, SD) 4.9 (1.4) 3.9 (1.5) 4.4 (1.7) 0.006 132 4.1 (1.6) 4.0 (1.5) 4.3 (1.5) 0.753 193

MUC5B genotype: GG (%) 5 (29.4%) 11 (27.5%) 14 (51.9%) 0.230 84 2 (11.8%) 6 (19.4%) 4 (25.0%) 0.780 64

MUC5B genotype: GT (%) 10 (58.8%) 26 (65.0%) 10 (37.0%)   14 (82.4%) 24 (77.4%) 12 (75.0%)   

MUC5B genotype: TT (%) 2 (11.8%) 3 (7.5%) 3 (11.1%)   1 (5.9%) 1 (3.2%) 0 (0%)   

Data are presented as count (percentage), mean (SD) or median (IQR). GAP index, Gender, age and physiology index for IPF mortality.20 P value for count data is from a χ2 
test, test comparing means is analysis of variance and test comparing medians is the Kruskal- Wallis log rank test. Significant p values (p<0.05) are highlighted in bold. For 
percentages, the denominator was the number of participants in that cluster with non- missing data for that trait.
DLCO, diffusing capacity for carbon monoxide; FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity; IPF, idiopathic pulmonary fibrosis; MUC5B genotype, 
genotype for the MUC5B promoter polymorphism rs35705950; NA, data not available.
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Interstitial lung disease

As clusters 1 and 3 were not significantly distinct in terms of 
survival, both clusters were considered equally ‘high risk’ for the 
assignments based on the 13- gene classifier. Fifty- one out of 52 
(98.1%) genes in the gene signature by Herazo- Maya et al were 
present in the GSE27957 dataset and 50/52 (96.2%) were avail-
able in the GSE28042 dataset. Overall, there was 68.3% agree-
ment between the two methods (online supplemental table E11).

Our classifier performed well at predicting survival (figure 4A, 
E9A and E9C), with the subjects in the ‘high- risk’ clusters having 
far poorer survival over time than those in the ‘low- risk’ cluster. 
A univariate Cox PH model estimated that at any follow- up 
time, an individual in a high- risk cluster was 4.25 times more 
likely to die than an individual in the low- risk cluster (95% CI 
2.14 to 8.46, p=3.7×10−5). This model had a C- index (the 
equivalent of the area under the curve for a receiver operating 
characteristic curve) of 0.664 (95% CI 0.590 to 0.737). SAMS 
(figure 4B, E9B and E9D) performed less well, with a Cox PH 
model estimating that at any time, those in the high- risk group 
were 1.98 times as likely to die than those in the low- risk group 
(95% CI 1.07 to 3.68, p=0.030) and a C- index of 0.609 (95% 
CI 0.531 to 0.686).

The risk predictions made using the classifier remained statis-
tically significant (p=0.007) after adjusting for age, sex, ancestry, 
FVC and DLCO (online supplemental table E12), with an HR of 
2.70 between the high- risk and low- risk clusters (95% CI 1.32 
to 5.53). This model had a C- index of 0.773 (95% CI 0.697 to 
0.848), which was greater than that of the Cox model containing 
only age, sex, ancestry, FVC and DLCO (C- index=0.747, 95% 
CI 0.670 to 0.825), suggesting an improvement in predictive 
ability. A likelihood ratio test between the two models gave a 
p value of 0.005, suggesting that the improvement in predic-
tive ability when including the classifier’s risk predictions was 
statistically significant. The multivariate Cox model containing 
SAMS’ risk predictions had a C- index of 0.760 (95% CI 0.684 
to 0.837), which suggested an improvement over the Cox model 
containing only age, sex, ancestry, FVC and DLCO, although the 
likelihood ratio test p value between these two models was not 
statistically significant (p=0.105).

DISCUSSION
By applying new statistical methods for data co- normalisation 
and machine learning to multiple publicly available datasets, 
we identified three clusters of patients with IPF with statisti-
cally significant differences in lung function and survival. As the 

Figure 3 A Kaplan- Meier plot showing survival over time for the 
clustered validation subjects. The p value shown on the plot is from a 
log- rank test testing the three curves for equality. Median survival in 
each cluster is shown by dotted lines, where possible.

Figure 4 Survival over time for the subjects with IPF in GSE27957 and GSE28042, stratified by risk group according to our 13 gene classifier (A) and 
SAMS method by Herazo- Maya et al (B) . The p value on each plot is from a log- rank test testing the two curves for equality. A dotted line on the plot 
indicates the median survival time for the risk group if this could be calculated.
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clustering in this study was undertaken independently of clinical 
data, yet significant differences in clinical traits were observed 
between clusters, this suggests that they may be representative of 
distinct and clinically relevant endotypes of IPF.

In this study, we used datasets in which the gene expression 
had been measured from whole blood samples. However, as IPF 
is a lung disease, characterised by damage to the alveolar epithe-
lium, patterns of gene expression identified in blood may not 
reflect the underlying pathology of the disease and may instead 
reflect downstream effects or the presence of confounders, such 
as secondary infections or treatment effects. Nonetheless, blood 
is more accessible than a lung- specific tissue/cell type and the 
expression of a gene in blood is often a significant predictor of 
the expression of that gene in lung.21 Furthermore, the blood 
expression datasets available on GEO provided a larger sample 
size and more comprehensive accompanying clinical data than 
lung- specific tissue types, which allowed us to identify statisti-
cally significant clinical differences between clusters. In addition, 
this allowed us to develop a blood- based classifier, which has 
more clinical utility than one that requires measurements from 
lung, as this would require more invasive sample collection.

The genes that were most differently expressed in subjects in 
cluster 1 were significantly enriched for biological mechanisms 
related to electron transport and cellular respiration. Recent 
findings appear to suggest that metabolic dysregulation could be 
a contributing factor to fibrosis, although its role is not yet fully 
understood.22 23 The genes in cluster 1 were also significantly 
enriched for pathways related to transforming growth factor-β 
signalling, which is a central mediator of fibrosis.24–26

Among the biological pathways that were significantly 
enriched for cluster 2 were pathways related to apoptosis and cell 
cycle. It has been previously reported that apoptosis is increased 
in alveolar epithelial cells of patients with IPF but decreased 
in myofibroblasts,27 with this imbalance contributing to IPF 
pathogenesis.28 Furthermore, the use of therapies that can selec-
tively manipulate apoptosis have been proposed.29 Additionally, 
genetic variants within cell cycle genes have been shown to be 
associated with IPF development and progression.30 The results 
for this cluster could further support the idea that apoptosis and 
cell cycle each play an important role in the pathology of IPF.

Cluster 3 was enriched for terms related to the immune system 
response. The role of the immune system in IPF has been contro-
versial in the past; failed immunomodulatory therapies in IPF, 
some of which have led to worse outcomes, have led to specula-
tion that certain immune responses are protective while others 
are harmful.31 32 An improved understanding of immune- driven 
endotypes could inform novel treatment approaches.

The 13- gene expression- based cluster classifier was able to 
assign the subjects with IPF from the validation datasets to clus-
ters with statistically significant differences in survival between 
clusters 2 and 3 (p=9.1×10−5), which was consistent with the 
findings in the discovery stage (p=0.008). In addition, while 
survival information was not directly available for the individ-
uals in cluster 1 in the discovery stage, the significantly low 
average DLCO and high average GAP score for the individuals in 
that cluster is consistent with the poor survival that was observed 
for cluster 1 in the validation stage. As the classifier appears to 
have the ability to assign subjects who are at a lower risk of death 
into cluster 2 and the subjects who are at a greater risk of death 
into the other two clusters, it could potentially be used to predict 
survival in IPF.

The performance of the classifier in predicting survival was 
compared with SAMS, a similar approach to outcome predic-
tion in IPF.19 Despite using data from one- quarter of the number 

of genes used for SAMS, the differences in survival over time 
observed between the risk groups in the two validation datasets 
had greater statistical significance and effect size when predic-
tions were made using the classifier. Additionally, including 
the classifier’s predictions in a survival model that adjusted 
for important covariate factors led to a statistically significant 
increase in predictive ability.

One of the main strengths of this study was that the utilisation 
of a new statistical approach to co- normalisation (COCONUT) 
allowed for three datasets to be combined,16 resulting in one of 
the largest transcriptomic studies in IPF to date with a total of 
414 IPF cases across the discovery and validation stages. Another 
strength of our study was that the application of COMMUNAL, 
which considered two different clustering algorithms and tested 
five validity measures over a range of genes, meant that our clus-
tering was more reliable and more likely to be reproducible than 
the standard approach, which would have been to apply one 
clustering algorithm and test one validity measure.

There were several limitations to this study. First, as we relied 
on the use of publicly available data, some clinical variables were 
relatively underpowered due to missingness within the data or 
having not been reported in all studies. In particular, survival 
information was only available in one of the three discovery 
cohorts and two of the three validation cohorts, which may have 
limited our ability to clinically distinguish clusters 1 and 3 in 
terms of survival. In addition, we lacked detailed data for clin-
ically significant traits such as patient reported outcomes, lung 
function decline over time and the incidence rate of acute exacer-
bations. Additionally, we did not possess information regarding 
the background therapy of the subjects with IPF. However, for 
the three cohorts with survival data available, we were able to 
glean from the original papers that the patients with IPF were 
either treatment- naïve populations (GSE93606) or that there 
were only a small proportion that were receiving immunosup-
pressive therapy at the time of the blood collection (GSE27957 
and GSE28042). In addition, these populations were not given 
anti- fibrotics and so treatment effects are unlikely to have been 
driving the large differences in survival that were observed 
between clusters. These limitations highlight the need for a 
single large prospective study on this topic with more compre-
hensive phenotyping.

A further weakness of our study is that each participating 
cohort of subjects with IPF was subject to survival bias, as only 
subjects who survived long enough to enrol into each study could 
have contributed their transcriptomic data to it. This could have 
restricted the level of heterogeneity of IPF that we were able 
to capture in the study and limited the generalisability of our 
findings.

Additionally, COCONUT makes the assumption that the 
healthy controls across the different studies came from the same 
statistical distribution and so all differences between healthy 
controls across studies must have been due to non- biological 
variation. This means that any large differences in confounding 
factors between the groups of healthy controls would have 
restricted the efficacy of the co- normalisation. However, 
there were no significant differences in age (p=0.187) or sex 
(p=0.477) between the healthy controls across the three studies.

If the clusters identified in this study do truly represent endo-
types of IPF, it may be worth speculating about the nature of 
these endotypes. As IPF is a complex disease, with many known 
common genetic and environmental exposures, it is unlikely that 
it would behave under a traditional discrete endotype model and 
instead more likely that it would behave under a more complex 
model, such as the palette model described by McCarthy.33 
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Our gene enrichment analysis results could implicate metabolic 
changes and the immune system response as being among the 
component pathways for IPF.

To conclude, these results could support the hypothesis of 
multiple endotypes of IPF as there appear to be at least two clin-
ically distinct groups of patients with IPF that can be identified 
through cluster analysis of transcriptomic data. As these clusters 
were defined using expression from groups of genes that were 
significantly enriched for many different biological pathways and 
processes, they could be representative of distinct pathophysio-
logical states. Additionally, a classifier with the ability to assign 
additional individuals with IPF to one of the clusters was devel-
oped. With further development, this classifier could be a useful 
tool in outcome prediction in IPF as well as helping us gain a 
better understanding of the underlying biological processes that 
may be driving the observed differences in survival.
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