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participants. The ‘full release’ of UK biobank genetic data followed later, and included data on 

>450,000 participants. 

The sampling strategies for each GWAS were as follows: the exposure blood cell GWAS included up 

to ~173,000 individuals in total (exact sample size varied according to cell type, N=172,275 for 

eosinophils, see Supplementary Table 3 for sample sizes of all cell types). This included up to 

132,959 individuals from the UK Biobank first release of genetic data, and up to 40,521 samples from 

the INTERVAL study. Samples were of European ancestry. 

The most prominent overlap was for the asthma GWAS dataset,3 since individuals were also only 

sampled from the interim release of UK Biobank data (around 1/3 of participants). However, the 

asthma outcome GWAS was supplemented with cases from GASP and UBIOPRED. 

The lung function, ACO and AECOPD GWAS data sets were sampled from 321,057 European ancestry 

individuals within the full release of UK Biobank genetic data who also had lung function measures 

passing QC.2 

Whilst it is not possible to calculate the exact degree of sample overlap, likely estimates are 

presented overleaf, where overlap is the proportion of participants in the outcome GWAS who are 

also likely to feature in the exposure GWAS. For studies including UK Biobank data only, this figure is 

likely to be around 30%.
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Estimation of % participants in outcome GWAS expected to feature in exposure GWAS 

Exposure data set Outcome data sets % participants in 

outcome GWAS 

expected to feature in 

exposure GWAS* 

Blood cell types Outcome UKB sample size and source 

(sampled from full release, or 

interim release of UKB genetic data) 

Other studies sample size and 

source 

~132,959 participants sampled 

from interim release of UK 

Biobank genetic data 

 

~40,521 INTERVAL participants1 

Lung function (four traits)2 321,047 (full release) 79,055 (SpiroMeta) 23% 

Moderate-severe asthma3 2,996 cases (interim release) 

25,600 controls (interim release) 

1858+281 cases (GASP+UBIOPRED) 

75 controls (UBIOPRED) 

55% (cases) 

94% (controls) 

ACO6 8,068 cases (full release) 

40,360 controls (full release) 

 

  

29% (cases) 

29% (controls) 

Respiratory infections7 19,459 cases (full release) 

101,438 controls (full release) 

AECOPD 2,771 cases (full release) 

42,052 controls (full release) 

 

*Core assumptions for calculations above: 

 Assume phenotype availability is random with respect to genotype availability, for all GWAS 

 463,844 participants with genotype data and of European ancestry in full release5 

 152,725 genotyped participants in interim release8  

 141,751 of the above designated European ancestry in interim release9 

 132,959 (assumed as a subset of the above) in blood cell type GWAS (Astle et al. 2016)1 
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We additionally used a method developed by the same authors to perform MVMR in the presence of 

moderately weak instruments. This approach estimates causal effects whilst accounting for excess 

heterogeneity (unrelated to variance in SNP-exposure or SNP-outcome associations) in the per-SNP 

effects, and is more robust to balanced pleiotropy. It was implemented using the qhet_mvmr() 

function in the ‘MVMR’ R package.  

A jack-knife procedure was used to calculate standard errors (SÊ𝑗𝑎𝑐𝑘) for 𝜃, the causal estimate, as 

adapted from 18: briefly, each of 𝑖 = 1, 2, … 𝑛 SNP IVs was omitted in turn, and the causal estimate 

re-estimated for the 𝑖𝑡ℎ jack-knife sample, giving 𝑛 estimates in total, where 𝜃(𝑖) is the 𝑖𝑡ℎ jack-knife 

replication of 𝜃, e.g. the causal estimate from the dataset with the 𝑖𝑡ℎ SNP IV removed. SÊ𝑗𝑎𝑐𝑘 for an 

exposure-outcome causal effect, 𝜃, are then given as: SÊ𝑗𝑎𝑐𝑘 = [𝑛 − 1𝑛 ∑(𝜃(𝑖) − 𝜃(.))2]1/2 

where 𝜃(.) =  ∑ 𝜃(𝑖)/𝑛𝑛𝑖=1  

Multivariable MR, omitting variants contributing most to heterogeneity (quantified by Q statistic) 

Finally, we examined the individual contribution of each SNP IV to the MVMR estimates, by omitting 

each SNP in turn. The absolute percentage reduction in the 𝑄𝐴 statistic after omitting a given SNP, 

compared to the 𝑄𝐴 statistic when including all SNPs in the model was calculated. SNPs that led to a 

reduction in Q by at least 2.5% were noted (Supplementary Table 11), and IVW MVMR models were 

recalculated without this subset of SNPs. 
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