Supplemental material: *Understanding the effectiveness of different exercise training programme*

- 2 designs on VO_{2peak} in COPD: a component network meta-analysis
- 3

4 Supplementary methods

- 5 Exercise intensity was categorised into low, moderate and high intensity as detailed previously (very
- 6 high intensity in our previous classification was combined into the high intensity group due to
- 7 limited numbers) [1].
- 8

9 Supplementary results

10 Model 1 included 50 controlled trials involving 1899 participants. Of these, 19 were trials of aerobic

- 11 training versus usual care or structured education in isolation, 28 were controlled trials in which
- both arms performed aerobic training in different forms or with different "add-ons", and three
- 13 studies had three arms (one compared aerobic training with aerobic training plus inspiratory muscle
- 14 training versus usual care, one compared lower limb aerobic training with and without the addition
- of arm cycling versus usual care and one compared addition of either oxygen or helium hyperoxia
- 16 compared to aerobic training in isolation).

Model 2 included 30 studies involving 1210 participants. Of these, 17 were trials of aerobic training versus usual care or structured education in isolation, 10 were controlled trials comparing different forms of aerobic training and three were studies with three arms comparing two different forms of

- 20 aerobic training with usual care.
- In model 1, lower limb aerobic training (SMD 0.56 95% CI 0.32;0.81, intervention arms = 86), non-
- invasive ventilation (NIV) during exercise (SMD 0.55 95% CI 0.04;1.06, intervention arms = 4) and
- 23 administration of ghrelin alongside exercise training (SMD 1.13 95% CI 0.13;2.14, intervention arms =
- 1) were the effective components at improving VO2peak (Figure 2). No other component resulted in
- 25 significant improvement in VO2peak.
- 26 In model 2, moderate to high intensity continuous cycling and walking training modalities and high
- 27 intensity interval walking and cycling resulted in improvements in VO_{2peak} (all p<0.05, Figure 3). There
- 28 were non-significant improvements in VO_{2peak} following water-based callisthenics (SMD 0.41 95% CI -
- 29 0.26;1.09, intervention arms = 1) and land-based callisthenics (SMD 0.38 95% CI -0.03;0.78,
- 30 intervention arms = 6). No improvements in $\dot{V}O_{2peak}$ were seen following moderate intensity interval
- 31 cycling however this was performed by one intervention group. Stair climbing (SMD -0.79 95% CI -
- 32 1.28;-0.31, intervention arms = 4) and low intensity continuous walking (SMD -0.43 95% CI -0.83;-
- 33 0.03, intervention arms = 2) appeared to have a detrimental effect on improvements in $\dot{V}O_{2peak}$.
- 34 Whilst high intensity training modalities resulted in the greatest increase in VO_{2peak}, the differences
- 35 compared to moderate intensity training were not significant.
- 36 For model 1, a sensitivity analysis removing two unconnected studies did not significantly change the
- 37 results except eccentric cycling was removed from the model. Results did not change significantly
- 38 after removing two unconnected studies for model 2. Node splitting and examination of net heat
- 39 plots did not identify significant inconsistency between direct and indirect evidence for model 1 or 2
- 40 although the number of pairwise comparisons were low.
- 41 When limiting analysis to RCTs with low risk of bias for blinding of outcome assessors, 22 studies
- 42 remained in model 1 with aerobic training the only component with a significant impact on change

- in VO_{2peak} (SMD 0.97 95%Cl 0.12:1.82) and nine studies remained in model 2 with high intensity
 continuous walking and high intensity continuous cycling the only components with a significant
 impact on change in VO_{2peak} (SMD 0.94 95%Cl 0.02:1.86 and SMD 1.10 95%Cl 0.31:1.88). When
 limiting analysis to studies with high quality of reporting (Consensus on Exercise Reporting Template
 score ≥12), 19 studies remained in model 1 with aerobic training and ghrelin the only components
 with significant impact on change in VO_{2peak} (SMD 0.56 95%Cl 0.13:0.99 and SMD 1.13 95%Cl
- 49 0.04:2.22) and 11 studies remained in model 2 with high intensity continuous cycling and high
- 50 intensity interval walking the only components with a significant impact on change in VO_{2peak} (SMD
- 51 0.77 95%Cl 0.31:1.22 and SMD 1.11 95%Cl 0.03:2.19).
- 52 For model 1, when using a conservative estimate of the correlation coefficient, the effect of the
- 53 addition of vitamin supplementation to lower limb aerobic training became significant (SMD 0.65
- 54 95%CI 0.04:1.27) but the results were otherwise unchanged. Using a conservative estimate of the
- 55 correlation coefficient did not affect the results of model 2.
- 56
- 57 References
- Ward TJC, Plumptre CD, Dolmage TE, *et al.* Change in V'O2peak in Response to Aerobic
 Exercise Training and the Relationship With Exercise Prescription in People With COPD: A
 Systematic Review and Meta-analysis. *Chest* 2020;**158**:131–44.
 doi:10.1016/j.chest.2020.01.053
 Baumann HJ, Kluge S, Rummel K, *et al.* Low intensity, long-term outpatient rehabilitation in
- 622Baumann HJ, Kluge S, Rummel K, et al. Low intensity, long-term outpatient rehabilitation in63COPD: a randomised controlled trial. Respir Res 2012;13:86. doi:10.1186/1465-9921-13-86
- Borghi-Silva A, Arena R, Castello V, *et al.* Aerobic exercise training improves autonomic
 nervous control in patients with COPD. *Respir Med* 2009;103:1503–10.
 doi:10.1016/j.rmed.2009.04.015
- Borghi-Silva A, Mendes RG, Trimer R, *et al.* Potential effect of 6 versus 12-weeks of physical
 training on cardiac autonomic function and exercise capacity in chronic obstructive
 pulmonary disease. *Eur J Phys Rehabil Med* 2015;**51**:211–21.
- Duruturk N, Arikan H, Ulubay G, *et al.* A comparison of calisthenic and cycle exercise training
 in chronic obstructive pulmonary disease patients: A randomized controlled trial. *Expert Rev Respir Med* 2016;**10**:99–108. doi:10.1586/17476348.2015.1126419
- 6 Emery CF, Schein RL, Hauck ER, *et al.* Psychological and cognitive outcomes of a randomized
 trial of exercise among patients with chronic obstructive pulmonary disease. *Heal Psychol* 1998;**17**:232–40. doi:10.1037//0278-6133.17.3.232
- 7 Göhl O, Linz H, Schönleben T, *et al.* Effekte eines multimodularen ambulanten
 trainingsprogramms für patienten mit COPD. *Pneumologie* 2006;**60**:529–36. doi:10.1055/s 2006-944235
- Lake FR, Henderson K, Briffa T, *et al.* Upper-limb and lower-limb exercise training in patients
 with chronic airflow obstruction. *Chest* 1990;**97**:1077–82. doi:10.1378/chest.97.5.1077
- Larson JL, Covey MK, Wirtz SE, *et al.* Cycle ergometer and inspiratory muscle training in
 chronic obstructive pulmonary disease. *Am J Respir Crit Care Med* 1999;**160**:500–7.
 doi:10.1164/ajrccm.160.2.9804067
- 8410Reardon J, Awad E, Normandin E, et al. The effect of comprehensive outpatient pulmonary85rehabilitation on dyspnea. Chest 1994;105:1046–52. doi:10.1378/chest.105.4.1046

86 87 88	11	Ries AL, Kaplan RM, Limberg TM, <i>et al.</i> Effects of Pulmonary Rehabilitation on Physiologic and Psychosocial Outcomes in Patients with Chronic Obstructive Pulmonary Disease. <i>Ann Intern Med</i> 1995; 122 :956–64. doi:10.7326/0003-4819-122-11-199506010-00003
89 90 91	12	Troosters T, Gosselink R, Decramer M. Short- and long-term effects of outpatient rehabilitation in patients with chronic obstructive pulmonary disease: a randomized trial. <i>Am J Med</i> 2000; 109 :207–12. doi:10.1016/S0002-9343(00)00472-1
92 93 94	13	Wijkstra PJ, van der Mark TW, Kraan J, <i>et al</i> . Long-term effects of home rehabilitation on physical performance in chronic obstructive pulmonary disease. <i>Am J Respir Crit Care Med</i> 1996; 153 :1234–41. doi:10.1164/ajrccm.153.4.8616547
95 96 97 98	14	Zambom-Ferraresi F, Cebollero P, Gorostiaga EM, <i>et al.</i> Effects of Combined Resistance and Endurance Training Versus Resistance Training Alone on Strength, Exercise Capacity, and Quality of Life in Patients With COPD. <i>J Cardiopulm Rehabil Prev</i> 2015; 35 :446–53. doi:10.1097/HCR.0000000000000132
99 100 101	15	Covey MK, Collins EG, Reynertson SI, <i>et al.</i> Resistance training as a preconditioning strategy for enhancing aerobic exercise training outcomes in COPD. <i>Respir Med</i> 2014; 108 :1141–52. doi:10.1016/j.rmed.2014.06.001
102 103 104	16	Gigliotti F, Coli C, Bianchi R, <i>et al.</i> Exercise training improves exertional dyspnea in patients with COPD: evidence of the role of mechanical factors. <i>Chest</i> 2003; 123 :1794–802.http://www.ncbi.nlm.nih.gov/pubmed/12796152 (accessed 29 Oct 2018).
105 106 107	17	Leite MR, Ramos EMC, Kalva-Filho CA, <i>et al</i> . Effects of 12 weeks of aerobic training on autonomic modulation, mucociliary clearance, and aerobic parameters in patients with COPD. <i>Int J COPD</i> 2015; 10 :2549–57. doi:10.2147/COPD.S81363
108 109 110	18	O'Donnell DE, Mcguire M, Samis L, <i>et al</i> . The impact of exercise reconditioning on breathlessness in severe chronic airflow limitation. <i>Am J Respir Crit Care Med</i> 1995; 152 :2005–13. doi:10.1164/ajrccm.152.6.8520769
111 112 113	19	Serres I, Varray A, Vallet G, <i>et al.</i> Improved skeletal muscle performance after individualized exercise training in patients with chronic obstructive pulmonary disease. <i>J Cardiopulm Rehabil</i> 1997; 17 :232–8. doi:10.1097/00008483-199707000-00003
114 115 116	20	Vogiatzis I, Williamson AF, Miles J, <i>et al.</i> Physiological response to moderate exercise workloads in a pulmonary rehabilitation program in patients with varying degrees of airflow obstruction. <i>Chest</i> 1999; 116 :1200–7. doi:10.1378/chest.116.5.1200
117 118 119 120	21	Wen H, Gao Y, An J-Y. [Comparison of high-intensity and anaerobic threshold programs in rehabilitation for patients with moderate to severe chronic obstructive pulmonary disease]. <i>Zhonghua Jie He Hu Xi Za Zhi</i> 2008; 31 :571–6.http://www.ncbi.nlm.nih.gov/pubmed/19080398 (accessed 29 Oct 2018).
121 122	22	Wadell K, Sundelin G, Henriksson-Larsen K, <i>et al.</i> High intensity physical group training in wateran effective training modality for patients with COPD. <i>Respir Med</i> 2004; 98 :428–38.
123 124 125	23	Bernard S, Whittom F, Leblanc P, <i>et al</i> . Aerobic and strength training in patients with chronic obstructive pulmonary disease. <i>Am J Respir Crit Care Med</i> 1999; 159 :896–901. doi:10.1164/ajrccm.159.3.9807034
126 127 128	24	Bianchi L, Foglio K, Porta R, <i>et al.</i> Lack of additional effect of adjunct of assisted ventilation to pulmonary rehabilitation in mild COPD patients. <i>Respir Med</i> 2002; 96 :359–67. doi:10.1053/rmed.2001.1287

129 130	25	Blanco I, Santos S, Gea J, <i>et al.</i> Sildenafil to improve respiratory rehabilitation outcomes in COPD: a controlled trial. <i>Eur Respir J</i> 2013; 42 :982–92. doi:10.1183/09031936.00176312
131 132 133	26	Borghi-Silva A, Mendes RGG, Toledo AC, <i>et al.</i> Adjuncts to physical training of patients with severe COPD: oxygen or noninvasive ventilation? <i>Respir Care</i> 2010; 55 :885–94. doi:10.1016/S0002-8703(03)00499-X
134 135 136	27	Broekhuizen R, Wouters EFM, Creutzberg EC, <i>et al</i> . Polyunsaturated fatty acids improve exercise capacity in chronic obstructive pulmonary disease. <i>Thorax</i> 2005; 60 :376–82. doi:10.1136/thx.2004.030858
137 138 139	28	Brønstad E, Tjonna AE, Rognmo Ø, <i>et al.</i> Aerobic exercise training improves right- and left ventricular systolic function in patients with COPD. <i>COPD J Chronic Obstr Pulm Dis</i> 2013; 10 :300–6. doi:10.3109/15412555.2012.745843
140 141 142	29	Burdet L, de Muralt B, Schutz Y, <i>et al.</i> Administration of growth hormone to underweight patients with chronic obstructive pulmonary disease: A prospective, randomized, controlled study. <i>Am J Respir Crit Care Med</i> 1997; 156 :1800–6. doi:10.1164/ajrccm.156.6.9704142
143 144 145	30	Carrieri-Kohlman V, Gormley JM, Douglas MK, <i>et al.</i> Exercise training decreases dyspnea and the distress and anxiety associated with it. Monitoring alone may be as effective as coaching. <i>Chest</i> 1996; 110 :1526–35.
146 147 148	31	Costes F, Agresti A, Court-Fortune I, <i>et al</i> . Noninvasive ventilation during exercise training improves exercise tolerance in patients with chronic obstructive pulmonary disease. <i>J Cardiopulm Rehabil</i> 2003; 23 :307–13. doi:10.1097/00008483-200307000-00008
149 150 151 152	32	Creutzberg EC, Wouters EFM, Mostert R, <i>et al.</i> A role for anabolic steroids in the rehabilitation of patients with COPD? A double-blind, placebo-controlled, randomized trial. <i>Chest</i> 2003; 124 :1733–42.http://www.ncbi.nlm.nih.gov/pubmed/14605042 (accessed 4 Jan 2017).
153 154	33	Coppoolse R, Schols AM, Baarends EM, <i>et al.</i> Interval versus continuous training in patients with severe COPD: a randomized clinical trial. <i>Eur Respir J</i> 1999; 14 :258–63.
155 156 157	34	Dekhuijzen PNR, Folgering HTM, van Herwaarden CLA. Target-flow inspiratory muscle training during pulmonary rehabilitation in patients with COPD. <i>Chest</i> 1991; 99 :128–33. doi:10.1378/chest.99.1.128
158 159 160 161	35	Delussu AS, Laudisio A, Pedone C, <i>et al</i> . Effects of two adapted physical activity training programs on pulmonary functionality and exercise capacity in patients affected by chronic obstructive pulmonary disease. Thorax. 2014; 69 :A66–7.http://thorax.bmj.com/content/69/Suppl_2/A66.2.short (accessed 29 Oct 2018).
162 163 164	36	Emtner M, Porszasz J, Burns M, <i>et al.</i> Benefits of supplemental oxygen in exercise training in nonhypoxemic chronic obstructive pulmonary disease patients. <i>Am J Respir Crit Care Med</i> 2003; 168 :1034–42. doi:10.1164/rccm.200212-1525OC
165 166 167	37	Eves ND, Sandmeyer LC, Wong EY, <i>et al.</i> Helium-hyperoxia: a novel intervention to improve the benefits of pulmonary rehabilitation for patients with COPD. <i>Chest</i> 2009; 135 :609–18. doi:10.1378/chest.08-1517
168 169	38	Ferreira IM, Verreschi IT, Nery LE, <i>et al.</i> The influence of 6 months of oral anabolic steroids on body mass and respiratory muscles in undernourished COPD patients. <i>Chest</i> 1998; 114 :19–28.
170 171	39	Fichter J, Fleckenstein J, Stahl C, <i>et al</i> . Einfluss von Sauerstoff (FI02: 0.35) auf die aerobe Belastbarkeit bei Patienten mit COPD. <i>Pneumologie</i> 1999; 53 :121–

172 173 174 175		6.https://scholar.google.co.uk/scholar?hl=en&as_sdt=0%2C5&q=Einfluss+von+Sauerstoff+%2 8F%28IO2%29%3A+0.35%5D+auf+die+aerobe+Belastbarkeit+bei+Patienten+mit+COPDInflue nce+of+oxygen+%28F%28IO2%29%3A+0.35%29+on+the+exercise+capacity+in+patients+with +COPD&btnG= (accessed 29 Oct 2018).
176 177 178	40	Fuld JP, Kilduff LP, Neder JA, <i>et al.</i> Creatine supplementation during pulmonary rehabilitation in chronic obstructive pulmonary disease. <i>Thorax</i> 2005; 60 :531–7. doi:10.1136/thx.2004.030452
179 180 181	41	Hornikx M, Van Remoortel H, Lehouck A, <i>et al.</i> Vitamin D supplementation during rehabilitation in COPD: a secondary analysis of a randomized trial. <i>Respir Res</i> 2012; 13 :1–9. doi:10.1186/1465-9921-13-84
182 183 184	42	Mador MJ, Deniz O, Aggarwal A, <i>et al.</i> Effect of respiratory muscle endurance training in patients with COPD undergoing pulmonary rehabilitation. <i>Chest</i> 2005; 128 :1216–24. doi:10.1378/chest.128.3.1216
185 186 187	43	Mador MJ, Krawza M, Alhajhusian A, <i>et al.</i> Interval training versus continuous training in patients with chronic obstructive pulmonary disease. <i>J Cardiopulm Rehabil Prev</i> 2009; 29 :126–32. doi:10.1097/HCR.0b013e31819a024f
188 189 190 191	44	Miki K, Maekura R, Nagaya N, <i>et al.</i> Effects of ghrelin treatment on exercise capacity in underweight COPD patients: a substudy of a multicenter, randomized, double-blind, placebo-controlled trial of ghrelin treatment. <i>BMC Pulm Med</i> 2013; 13 :37. doi:10.1186/1471-2466-13-37
192 193	45	Normandin EA, McCusker C, Connors M, <i>et al</i> . An evaluation of two approaches to exercise conditioning in pulmonary rehabilitation. <i>Chest</i> 2002; 121 :1085–91.
194 195 196	46	Reuveny R, Ben-Dov I, Gaides M, <i>et al</i> . Ventilatory support during training improves training benefit in severe chronic airway obstruction. <i>Isr Med Assoc J</i> 2005; 7 :151–5. doi:10.1097/00008483-200507000-00013
197 198 199	47	Rodríguez DA, Arbillaga A, Barberan-Garcia A, <i>et al.</i> Effects of interval and continuous exercise training on autonomic cardiac function in COPD patients. <i>Clin Respir J</i> 2016; 10 :83–9. doi:10.1111/crj.12189
200 201 202	48	Rooyackers JM, Berkeljon DA, Folgering HTM. Eccentric exercise training in patients with chronic obstructive pulmonary disease. <i>Int J Rehabil Res</i> 2003; 26 :47–9. doi:10.1097/01.mrr.0000054807.81886.9e
203 204 205	49	Scorsone D, Bartolini S, Saporiti R, <i>et al.</i> Does a low-density gas mixture or oxygen supplementation improve exercise training in COPD? <i>Chest</i> 2010; 138 :1133–9. doi:10.1378/chest.10-0120
206 207 208 209	50	Sivori M, Rhodius E, Kaplan P, <i>et al.</i> Entrenamiento muscular en la enfermedad pulmonar obstructiva cronica severa. <i>Medicina (B Aires)</i> 1998; 58 :717– 27.http://www.medicinabuenosaires.com/revistas/vol58-98/n6/58-98n6-717-727.pdf (accessed 30 Oct 2018).
210 211 212	51	Spielmanns M, Fuchs-Bergsma C, Winkler A, <i>et al.</i> Effects of Oxygen Supply During Training on Subjects With COPD Who Are Normoxemic at Rest and During Exercise: A Blinded Randomized Controlled Trial. <i>Respir Care</i> 2015; 60 :540–8. doi:10.4187/respcare.03647
213 214	52	Sykes K, Hang H. Inspiratory muscle training in the treatment of chronic obstructive pulmonary disease: randomized controlled trial. <i>Am J Recreat Ther</i> 2005; 4 :39–48.

215

53

Vallet G, Ahmaïdi S, Serres I, et al. Comparison of two training programmes in chronic airway

216 217		limitation patients: Standardized versus individualized protocols. <i>Eur Respir J</i> 1997; 10 :114– 22. doi:10.1183/09031936.97.10010114
218 219 220	54	Varga J, Porszasz J, Boda K, <i>et al</i> . Supervised high intensity continuous and interval training vs. self-paced training in COPD. <i>Respir Med</i> 2007; 101 :2297–304. doi:10.1016/j.rmed.2007.06.017
221 222	55	Vogiatzis I, Nanas S, Roussos C. Interval training as an alternative modality to continuous exercise in patients with COPD. <i>Eur Respir J</i> 2002; 20 :12–9.
223 224	56	Vogiatzis I, Terzis G, Nanas S, <i>et al.</i> Skeletal muscle adaptations to interval training in patients with advanced COPD. <i>Chest</i> 2005; 128 :3838–45. doi:10.1378/chest.128.6.3838
225 226 227	57	Vonbank K, Strasser B, Mondrzyk J, <i>et al.</i> Strength training increases maximum working capacity in patients with COPDrandomized clinical trial comparing three training modalities. <i>Respir Med</i> 2012; 106 :557–63. doi:10.1016/j.rmed.2011.11.005
228 229 230	58	Wang K, Zeng GQ, Li R, <i>et al</i> . Cycle ergometer and inspiratory muscle training offer modest benefit compared with cycle ergometer alone: A comprehensive assessment in stable COPD patients. <i>Int J COPD</i> 2017; 12 :2655–68. doi:10.2147/COPD.S140093
231 232 233	59	Wanke T, Formanek D, Lahrmann H, <i>et al.</i> Effects of combined inspiratory muscle and cycle ergometer training on exercise performance in patients with COPD. <i>Eur Respir J</i> 1994; 7 :2205–11. doi:10.1183/09031936.94.07122205

235 **eTable 1** - Description of included controlled trials

Study	Group 1 components	Group 2 components	Group 3 compone nts	n	Age	Gender (M:F)	FEV1 (%pred)	n	Age	Gender (M:F)	FEV1 (%pred)	n	Age	Gender (M:F)	FEV1 (%pred)
Baumann, 2012 [2]	HIW + Callisthenics + stair climbing + ULRT + Education + Breathing retraining	Usual care		37	63 (11)	23: 14	47 (13)	44	65 (8)	24:20	45 (13)		7.80	(/	(//prcu/
Borghi-Silva, 2009 [3]	HICW	Usual care		20	67 (10)	13: 7	33 (9)	14	67 (10)	12:8	35 (11)				
Borghi-Silva, 2015 [4]	HICW	Usual care		10	67 (7)	7:3	32 (11)	10	66 (10)	5:5	35 (12)				
Duruturk, 2016 [5]	HICC + Education	Usual care	Callisthen ics + Education	15	61 (5)	11: 4	58 (14)	13	64 (6)	11:2	64 (11)	14	61 (5)	13:1	57(10)
Emery, 1998 [6]	MICC + MICW + Education + arm cycling	Usual care		25	65 (6)	15: 15	43(18)	25	67 (7)	12:13	39 (16)				
Gohl, 2006 [7]	MICC + MICW + ULRT+ LLRT + Education	Usual care		19	63 (7)	6:4	53 (11)	9	63 (9)	7:2	54 (6)				
Lake, 1990 [8]	MICW	Usual care	MICW + arm cycling	6	72 (3)	6:0		7	66 (4)	6:1		7	66 (7)	4:3	
Larson, 1999 [9]	MICC	Usual care	MICC + IMT	14	66 (6)		46 (17)	12	62 (7)		55 (18)	14	68 (6)		46 (17)
Reardon, 1994 [10]	MICC + MICW + stair climbing + ULRT + Education + IMT + Breathing retraining	Usual care		10	66 (8)	5:5	35 (10)	10	66 (7)	5:5	33 (15)				
Ries, 1995 [11]	MICW + ULRT + Education + Breathing retraining + arm cycling	Education		53	61. 5 (8)	42: 15		57	64 (6)	45:17					
Troosters, 2000 [12]	HICC + HICW + stair climbing + ULRT + LLRT + arm cycling	Usual care		34	60 (9)	31:6	41 (16)	28	63 (7)	30:3	43 (12)				
Wijkstra, 1996 [13]	HICC + ULRT + Education + IMT + Breathing retraining	Usual care		28	64 (5)	23: 5	44 (11)	15	62 (5)	14:1	45 (9)				
Zambom- Ferraresi, 2015 [14]	MICC + ULRT + LLRT	Usual care		14	68 (7)	14: 0	44 (12)	8	69 (5)	8:0	40 (5)				

Covey, 2014 [15]	HIIC	HIIC + LLRT		27	68 (7)	25:2	39 (9)	28	68 (8)	24:4	41 (10)				
Gigliotti, 2003 [16] (crossover study)	HICC + ULRT + Education	Usual care		20	64 (8)	18:2	42 (12)								
Leite, 2015 [17]	ним	Usual care		10	62 (IQ R 60- 69)		55 (IQR 39-70)	6	62.5 (IQR 57- 71)		45 (IQR 38-74)				
O'Donnell, 1995 [18]	HICC + HICW + stair climbing +Breathing retraining + arm cycling	Usual care		30	66 (6)	20:10	38	30	69 (6)	23:7	38				
Serres, 1997 [19]	HIIC + MICW	Usual care		8	60 (2)		49 (12)	6	70 (3)		68 (23)				
Vogiatzis, 1999 [20]	MICC + MICW + Education	Usual care		60	64 (1)	38:22	55 (3)	15	56 (3)	32:28	55 (5)				
Wen, 2008 [21]	MICW	Usual care	HICC	15	67 (7)	14:1	46 (10)	9	66 (10)	9:0	52 (14)	17	68 (7)	17:0	50 (14)
Wadell, 2004 [22]	Callisthenics	Usual care	Water based Callisthen ics	14	65 (7)	5:10	53 (12)	12	63 (7)	7:6	49 (12)	15	65 (4)	4:11	56 (11)
Bernard, 1999 [23]	HICC + Breathing retraining	HICC + ULRT +LLRT		15	67 (9)	11:4	39 (12)	21	64 (7)	17:4	45 (15)				
Bianchi, 2002 [24]	MICC + ULRT + LLRT + Education	MICC + ULRT + LLRT + Education + NIV		10	65 (61- 69)	10:0	40 (12)	9	64 (61- 67)	9:0	48 (19)				
Blanco, 2013 [25]	HIIC + ULRT	HIIC + ULRT + sildenafil		31	65 (8)	26:5	31 (10)	29	66 (8)	28:1	33 (12)				

Borghi-Silva, 2010 [26]	HICW + NIV	HICW + oxygen	14	68 (9)	9:5	34 (10)	14	67 (7)	9:5	33 (7)
Broekhuizen, 2005 [27]	MICC + MICW + swimming	MICC + MICW + swimming + PUFA	32	62 (8)	35:16	36 (15)	31	64 (10)	36:15	38 (15)
Bronstad, 2013 [28]	HICW	MICW	10	65 (8)	7:3	55 (9)	7	65 (5)	5:2	50 (15)
Burdet, 1997 [29]	Moderate intensity exercise, modality unclear	Moderate intensity exercise, modality unclear + growth hormone	8	65 (8)	7:1	42 (12)	8	7:1	67 (10)	37 (15)
Carrieri- Kohlman, 1996 [30]	MICW	MICW + coaching	27	66 (9)	15:12	36 (10)	24	68 (7)	14:10	40 (11)
Costes, 2003 [31]	MICC	MICC + NIV	7	67 (6)	6:1	32 (7)	7	5:2	60 (7)	31 (12)
Creutzberg, 2003 [32]	MICC + MICW + swimming	MICC + MICW + swimming + anabolic steroids	28	67 (7)	28:0	33 (10)	28	28:0	66 (8)	38 (17)
Coppoolse, 1999 [33]	HICC + Callisthenics + Education	HIIC + Callisthenics + Education	10	67 (3)	10:0	37 (18)	9	63 (8)	9:0	36 (10)
Dekhuijzen, 1991[34]	MICC + MICW + Callisthenics + Education + Breathing retraining	MICC + MICW + Callisthenics + Education + Breathing retraining + IMT	20	60 (7)	16:4	52 (17)	20	14:6	58 (8)	47 (14)
Delussu, 2014a [35]	Moderate intensity exercise, modality unclear	Moderate intensity exercise, modality unclear + resistance training, unspecified	35	71 (9)	14:21	61 (14)	30	18:12	74 (6)	59 (18)
Emtner, 2003 [36]	HICC + Education	HICC + Education + oxygen	15	67 (10)	10:5	38 (8)	14	8:6	66 (7)	35 (10)

Eves, 2009 [37]	MICC + LIW + resistance training, unspecified + Education	MICC + LIW + resistance training, unspecified + Education + Helium- hyperoxia	19	66 (7)	12:7		19	12:7	65 (9)	
Ferreira, 1998 [38]	HICC	HICC + anabolic steroids	7	66 (7)	7:0	49 (16)	10	10:0	70 (5)	41 (14)
Fichter, 1999 [39]	HICC	HICC + oxygen	5	59 (7)	5:0	46 (27)	5	5:0	58 (11)	41 (8)
Fuld, 2005 [40]	MICC + Callisthenics + Education	MICC + Callisthenics + Education + creatine	11	64 (10)	13:7	45 (16)	14	10:8	62 (8)	45 (14)
Hornikx, 2012 [41]	HICC + HICW + ULRT + LLRT + arm cycling + stair climbing	HICC + HICW + ULRT + LLRT + arm cycling + stair climbing + vitamin D	25	69 (6)	19:6	40 (10)	24	67 (8)	19:6	47 (18)
Mador, 2005 [42]	MICC +MICW + Education + Callisthenics	MICC +MICW + Education + Callisthenics + IMT	14	71 (8)		44 (13)	15	70 (8)		45 (21)
Mador, 2009 [43]	HIIC + HIIW + Education	MICC + HICW + Education	21	72 (7)		45 (14)	20	72 (8)		42 (13)
Miki, 2013 [44]	HIIC + Education	HIIC + Education + Ghrelin	10	73 (6)	9:1	33 (11)	10	71 (6)	10:0	32 (9)
Normandin, 2002 [45]	HICC + HICW + Education	Callisthenics + ULRT + Education	20	69 (7)	11:9	43 (16)	20	67 (9)	10:10	56 (20)
Reuveny, 2005 [46]	MICW	MICW + NIV	10	63 (9)	9:1	33 (9)	9	64 (9)	9:0	32 (4)
Rodriguez, 2016 [47]	HIIC	HICC	14	67 (9)	13:1	43 (15)	15	66 (7)	14:1	41 (10)
Rooyackers, 2003 [48]	HIIC + resistance training, unspecified + Education	HIIC + resistance training, unspecified + Education + Eccentric cycling	12	59 (13)	10:2	38 (11)	12	59 (10)	10:2	45 (13)

Thorax

Scorsone, 2010 [49]	HICC	HICC + oxygen	HICC + Helium hyperoxia	10	68 (7)	7:3	50 (12)	10	67 (9)	7:3	47 (10)	10	67 (9)	9:1	49 (12)
Sivori, 1998 [50]	HICC	HICC + ULRT		14	63 (9)	12:2	35 (17)	14	66 (9)	11:3	37 (11)				
Spielmanns, 2015 [51]	HICC	HICC + oxygen		17	64 (8)		43 (12)	19	64 (8)		44 (10)				
Sykes, 2005 [52]	HICC + ULRT + Education	HICC + ULRT + Education + IMT		17	73 (7)	14:3	44 (12)	20	73 (7)	17:3	40 (13)				
Vallet, 1997 [53]	HIIC + Education	MIIC + Education		12	55 (3)	8:4	54	12	59 (3)	10:2	63				
Varga, 2007 [54]	HICC	HIIC		22	61 (12)	19:3	51 (16)	17	67 (10)	11:6	64 (29)				
Vogiatzis, 2002 [55]	HIIC + Education	MICC + Education		18	67 (2)	14:4	45 (4)	18	69 (2)	16:2	44 (4)				
Vogiatzis, 2005 [56]	HIIC + Education	HICC + Education		10	64 (9)	8:2	44 (19)	9	67 (6)	8:1	39 (18)				
Vonbank, 2012 [57]	HICC + Education	HICC + ULRT + LLRT + Education		12	62 (5)	8:4	58 (19)	12	59 (8)	9:3	51 (20)				
Wang, 2017 [58]	HICC	LIW	HICC + IMT	27	70 (6)		51 (18)	26	70 (6)		58 (19)	28	71 (5)		50 (16)
Wanke, 1994 [59]	HICC	HICC + IMT		21	57 (6)	10:11	48 (17)	21	55 (5)	12:9	44 (19)				

236 HIIC: High intensity interval cycling, HIIW: High intensity interval walking, HICC: High intensity continuous cycling, HICW: High intensity continuous walking,

237 MIIC: Moderate intensity interval cycling, MICC: Moderate intensity continuous cycling, MICW: Moderate intensity continuous walking, LIW: Low intensity

walking, PUFA: polyunsaturated fatty acids, IMT: inspiratory muscle training, ULRT: upper limb resistance training, LLRT: lower limb resistance training

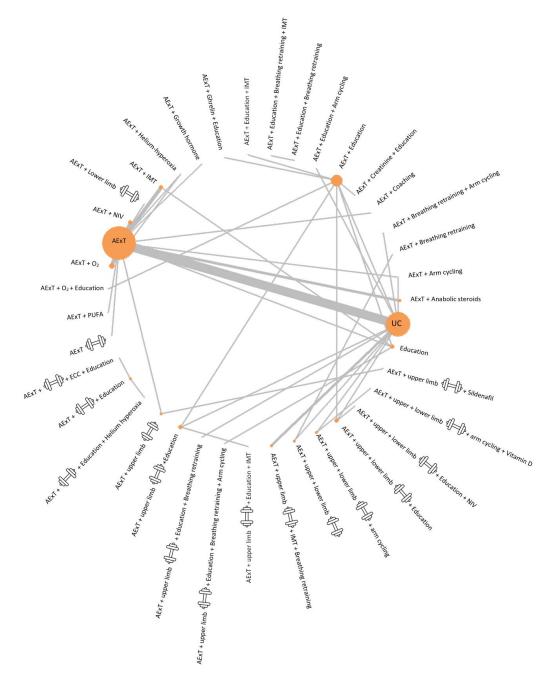
239 eTable 2 – Bias assessment for randomised controlled trials

Study	Random sequence generation (selection bias)	Allocation concealment (selection bias)	Blinding of participant s and personnel (performan ce bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data (attrition bias)	Selective outcome reporting (reporting bias)	Other bias
Baumann (2012) [2]	Low	Unclear	High	Low	Low	Low	Low
Borghi-Silva (2009) [3]	Unclear	Unclear	High	Unclear	High	Low	Low
Borghi-Silva (2015) [4]	Low	Low	High	Low	Low	Low	Low
Duruturk (2016) [5]	Low	Low	High	Low	Low	Low	Low
Emery (1998) [6]	Low	Low	High	Low	Low	Low	Low
Gohl (2006) [7]	Low	Unclear	High	Unclear	High	Low	Low
Lake (1990) [8]	Unclear	Unclear	High	Unclear	Low	Low	Low
Larson (1999) [9]	Unclear	Unclear	High	Low	Unclear	Low	Low
Reardon (1994) [10]	Low	Unclear	High	Low	Unclear	Low	Low
Ries (1995) [11]	Low	Low	High	Unclear	Low	Low	Low
Troosters (2000) [12]	Low	Low	High	Unclear	Low	Low	Low
Wijkstra (1996) [13]	Unclear	Unclear	High	Unclear	Low	Low	Low
Zambom-Ferraresi (2015) [14]	Unclear	Low	High	Low	Low	Low	Low
Bernard (1999)	Unclear	Unclear	High	Unclear	Low	Low	Low
Bianchi (2002)	Unclear	Unclear	High	High	High	Low	Low
Blanco (2013)	Unclear	Low	Low	Low	Low	Low	Low
Borghi-Silva (2010)	Low	Low	High	Unclear	Low	Low	Low
Broekhuizen (2005)	Unclear	Unclear	Low	Low	Low	Low	Low
Bronstad (2013)	Low	Unclear	High	Unclear	High	Low	Low
Burdet (1997)	Unclear	Unclear	Low	Low	Unclear	Low	Low
Carrieri-Kohlman (1996)	Unclear	Unclear	High	Unclear	Low	Low	Low
Coppoolse (1999)	Low	Unclear	High	Unclear	Low	Low	Low
Costes (2003)	High	High	High	Unclear	Low	Low	Low
Covey (2014)	Low	Low	Low	Low	Low	Low	Low
Creutzberg (2003)	Unclear	Low	Low	Low	Low	Low	Low
Dekhuijzen (1991)	Unclear	Unclear	High	Unclear	Low	Low	Low
Delussu (2014)	Unclear	Unclear	High	Unclear	Unclear	Low	Low
Emtner (2003)	Unclear	Unclear	Low	Low	Low	Low	Low
Eves (2009)	Low	Low	Low	Low	High	Low	Low
Ferreira (1998)	Unclear	Unclear	Low	Low	High	Low	Low
Fichter (1999)	Unclear	Unclear	Low	Unclear	Low	Low	Low
Fuld (2005)	Unclear	Unclear	Low	Low	High	Low	Low
Hornikx (2012)	Low	Low	Low	Low	Low	Low	Low
Larson (1999)	Unclear	Unclear	High	Low	High	Low	Low
Mador (2005)	Unclear	Unclear	High	Unclear	Low	Low	Low
Mador (2009)	Unclear	Low	High	Unclear	Low	Low	Low
Miki (2013)	Low	Low	Low	Low	Low	Low	Low
Normandin (2002)	Unclear	Unclear	High	High	Low	Low	Low

Reuveny (2005)	Low	Low	High	Low	Low	Low	Low
Rooyackers (2003)	Unclear	Unclear	High	Unclear	Unclear	Low	Low
Santos (2015)	Low	Low	High	High	Low	Low	Low
Scorsone (2010)	Unclear	Unclear	Low	Low	Low	Low	Low
Sivori (1998)	Low	Unclear	High	Unclear	High	Low	Low
Spielmanns (2015)	Low	Unclear	Low	High	High	Low	Low
Sykes (2005)	Unclear	Low	High	Low	Low	Low	Low
Vallet (1997)	Unclear	Unclear	Low	Low	Low	Low	Low
Vogiatzis (2002)	Unclear	Unclear	High	Unclear	Low	Low	Low
Vogiatzis (2005)	Unclear	Unclear	High	Unclear	Unclear	Low	Low
Vonbank (2012)	Unclear	Unclear	High	Unclear	Low	Low	Low
Wanke (1994)	Unclear	Unclear	High	Unclear	High	Low	Low
Wen (2008)	Low	Unclear	High	Unclear	High	Low	Low
Wang (2017)	Low	Low	High	Low	Low	Low	Low
Proportion: Low	40%	35%	29%	46%	65%	100%	100%
High	2%	2%	71%	8%	23%	0%	0%
Unclear	58%	63%	0%	46%	12%	0%	0%

241

242


Thorax

eFigure 1 – Network graph of programme components (model 1). (H): Resistance training, AExT:
 Traditional lower limb aerobic training, ECC: Eccentric cycling, IMT: Inspiratory muscle training,

PUFA: polyunsaturated fatty acids, UC: Usual care. The size of the nodes is proportional to the

247 number of included studies and the thickness of the lines is proportional to the number of

248 comparisons.

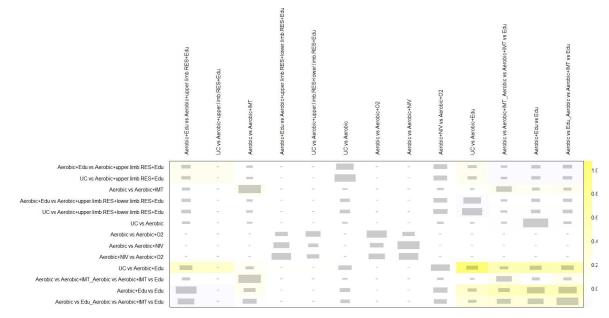
250 eFigure 2 – Net heat plot of model 1 once unconnected studies removed.

251 In this plot, the area of a grey square displays the contribution of the direct estimate of one design in

the column to a network estimate in a row. The colours show the change in inconsistency when

253 relaxing the assumption of consistency for the effects of single designs. The colours on the diagonal

254 represent the inconsistency contribution of the corresponding design. The colours on the off-


diagonal are associated with the change in inconsistency between direct and indirect evidence in a

256 network estimate in the row after relaxing the consistency assumption for the effect of one design in

the column. Cool colours (blue) indicate an increase and warm colours (yellow to orange to red) a

decrease, colours in between (yellow) indicate no change: the stronger the intensity of the colour,

the greater the difference between the inconsistency before and after the detachment.

262 eFigure 3 – Net heat plot of model 2 once unconnected studies removed.

In this plot, the area of a grey square displays the contribution of the direct estimate of one design in the column to a network estimate in a row. The colours show the change in inconsistency when relaxing the assumption of consistency for the effects of single designs. The colours on the diagonal represent the inconsistency contribution of the corresponding design. The colours on the offdiagonal are associated with the change in inconsistency between direct and indirect evidence in a network estimate in the row after relaxing the consistency assumption for the effect of one design in the column. Cool colours (blue) indicate an increase and warm colours (yellow to orange to red) a

270 decrease: the stronger the intensity of the colour, the greater the difference between the

inconsistency before and after the detachment (yellow represents a low intensity of red i.e. mildinconsistency).

