Altered research

Altered distribution, activation and increased IL-17 production of mucosal-associated invariant T cells in patients with acute respiratory distress syndrome

Tae-Ok Kim,1 Ki-Jeong Park,2 Young-Nan Cho,2 Hye-Mi Jin,2 Young-Goun Jo,3 Hyo Shin Kim,3 Jae Kyun Ju,3 Hong-Joon Shin,1 Bo-Gun Kho,1 Seung-Jung Kee,4 Yong-Wook Park2,5

ABSTRACT

Objective Mucosal-associated invariant T (MAIT) cells are a subset of innate-like T cells that are engaged in a number of diseases, but their roles in acute respiratory distress syndrome (ARDS) are not fully examined yet. This study aimed to examine levels and functions of MAIT cells in patients with ARDS.

Methods Peripheral blood samples from patients with ARDS (n=50) and healthy controls (HCs, n=50) were collected. Levels of MAIT cells, cytokines, CD69, programmed cell death-1 (PD-1) and lymphocyte-activation gene 3 (LAG-3) were measured by flow cytometry.

Results Circulating MAIT cell levels were significantly reduced in patients with ARDS than in HCs. MAIT cell levels were inversely correlated with disease severity and mortality. Cytokine production profiles in MAIT cells showed that percentages of interleukin (IL)-17 producing MAIT cell were significantly higher in patients with ARDS than in HCs. Patients with ARDS exhibited higher expression levels of CD69, PD-1 and LAG-3 in circulating MAIT cells. Moreover, levels of MAIT cells and expression levels of CD69, PD-1 and IL-17 in MAIT cells were higher in bronchoalveolar lavage fluid samples than in peripheral blood samples. Our in vitro experiments showed that MAIT cells triggered macrophages to produce proinflammatory cytokines such as tumour necrosis factor-α, IL-1β and IL-8.

Conclusions This study demonstrates that circulating MAIT cells are numerically deficient in patients with ARDS. In addition, MAIT cells were found to be activated, migrate into lung, secrete IL-17 and then stimulate macrophages. These findings suggest that MAIT cells contribute to the worsening of inflammation in the lung of patients with ARDS.

INTRODUCTION

Acute respiratory distress syndrome (ARDS) is a medical condition that exhibits a rapid impairment of gas exchange leading to hypoxaemic respiratory failure.1 The incidence of ARDS is estimated from 10 to 86 cases per 100 000,2 3 and approximately 10% of patients in intensive care unit are associated with this syndrome.4 It is caused mostly by pneumonia, sepsis or non-respiratory aetiologies such as burns, trauma and pancreatitis.4 5 Once damaged by those insults, the lung rapidly responds by activating the innate immune system, a stage referred to as the exudative phase.6 In this phase, protein-rich oedema fluid is filled within interstitial and alveolar space through injured epithelial barriers and various proinflammatory cytokines and mediators are secreted by alveolar macrophages, resulting in the recruitment of neutrophil and macrophage that subsequently perpetuate inflammatory reactions.7 8 Recently, other immune cells such as innate lymphoid cells (ILCs) and innate-like T cells are identified as lung tissue-resident lymphocyte and considered to be important players in mediating pulmonary immune response.9 10

Mucosal-associated invariant T (MAIT) cells are a subset of innate-like T cells that express invariant T cell receptor (TCR) α-chain (Vα7.2-Jα33/12/20 in humans) with paring limited set of Vβ chains and recognise microbial riboflavin (vitamin B2) ligand bound on MHC class 1b-like related protein (MR1).11 Human MAIT cells comprise up to 10% of CD3+ cells, which is 10-fold to 1000-fold larger than the population of invariant natural killer T (iNKT) cells, another subset of innate-like T cells.12 On activation via their MR1-recognising TCRs and/ or cytokine receptors, MAIT cells release various cytokines and molecules to kill infected host cells13 as well as recruit and activate other immune cells.14

Key messages

What is the key question?
⇒ What are the numbers and functions of mucosal-associated invariant T (MAIT) cells in patients with acute respiratory distress syndrome (ARDS), and do these cells reflect the ARDS disease activity?

What is the bottom line?
⇒ Circulating MAIT cells are depleted in patients with ARDS, and this tendency reflects disease severity. The MAIT cells were activated, accumulated in bronchoalveolar lavage fluid, secreted IL-17 and then stimulated macrophages.

Why read on?
⇒ MAIT cells may play an immune-propagatory role in the acute exudative phase of ARDS and they can be a therapeutic target of ARDS.
Recent studies suggest its involvement in metabolic, malignant and chronic inflammatory diseases including a range of respiratory disorders. In COPD, for example, the MAIT cell levels in blood were reduced and that deficiency was related to disease activity. In a study on asthmatic patients, decreased MAIT cell levels were observed in blood, sputum and lung tissue, which was correlated with disease severity.

Several mouse models are describing the relevance of ILCs and innate-like T cells to ARDS. In a recombinase-activating gene 2 (RAG2) KO mouse model, pulmonary group three innate lymphoid cells (ILC3s) secrete interleukin (IL)-17A, one of the key mediators in recruiting neutrophils. Another mouse model in which mice were presensitised with α-galactosylceramide (α-GalCer) followed by inhalation of lipopolysaccharide showed activation of iNKT cells that leads to produce interferon (IFN)-γ and tumour necrosis factor (TNF)-α and exacerbate respiratory failure. However, MAIT cell levels and functions have yet to be investigated in ARDS. Besides, the relevance of MAIT cells to other innate immune cells has not been determined. Accordingly, this study aims to examine the levels and functions of MAIT cells in ARDS, evaluate the clinical relevance of MAIT cell levels, and investigate its association within the innate immune system.

MATERIALS AND METHODS

Monoclonal antibodies and flow cytometry

Detailed information is available in online supplemental methods.

Isolation of peripheral blood mononuclear cells and identification of MAIT cells

Detailed information is available in online supplemental methods.

Functional MAIT cell assay

Expression levels of IFN-γ, IL-17 and TNF-α in MAIT cells were detected by intracellular cytokine flow cytometry. Detailed information is available in online supplemental methods.

Coculture system for human macrophage activity assay

Detailed informations is available in online supplemental methods.

Statistical analysis

Detailed information is available in online supplemental methods.

RESULTS

Patient characteristics

The study cohort included 50 patients with ARDS (11 women and 39 men, mean age±SD: 63.8±18.9 years) and 50 healthy controls (HCs, 23 women and 27 men; mean age±SD: 65.8±8.79 years), indicating that there was a higher proportion of men in the ARDS group compared with HCs. Clinical and laboratory characteristics of patients are summarised in table 1. The severity of ARDS can be classified into the following three grades according to PaO2/FiO2 ratio: mild grade (200 mm Hg<PaO2/FiO2 ratio≤300 mm Hg); moderate grade (100 mm Hg<PaO2/FiO2 ratio≤200 mm Hg) and severe grade (PaO2/FiO2 ratio≤100 mm Hg). Among a total of 50 patients, 2 (4%) had mild disease; 31 (62%) had moderate disease; and 17 (34%) had severe disease.

<table>
<thead>
<tr>
<th>Total no.</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (no. male/no. female)</td>
<td>39/11</td>
</tr>
<tr>
<td>Age (years), median (IQR)</td>
<td>69.5 (52.8–77.0)</td>
</tr>
<tr>
<td>Clinical variables</td>
<td></td>
</tr>
<tr>
<td>Cause of disease, n (%)</td>
<td></td>
</tr>
<tr>
<td>Bacterial pneumonia</td>
<td>31/50 (62)</td>
</tr>
<tr>
<td>Viral pneumonia</td>
<td>3/50 (6)</td>
</tr>
<tr>
<td>Non-pulmonary sepsis</td>
<td>6/50 (24)</td>
</tr>
<tr>
<td>Aspiration</td>
<td>7/50 (14)</td>
</tr>
<tr>
<td>Others*</td>
<td>3/50 (6)</td>
</tr>
<tr>
<td>Disease severity, n (%)</td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>2/50 (4)</td>
</tr>
<tr>
<td>Moderate</td>
<td>31/50 (62)</td>
</tr>
<tr>
<td>Severe</td>
<td>17/50 (34)</td>
</tr>
<tr>
<td>Mortality, n (%)</td>
<td>25/50 (50)</td>
</tr>
<tr>
<td>PEEP (cmH₂O), median (IQR)</td>
<td>12.0 (10.0–13.0)</td>
</tr>
<tr>
<td>Plateau pressure (cmH₂O), median (IQR)</td>
<td>28.0 (24.5–31.5)</td>
</tr>
<tr>
<td>ECMO (%)</td>
<td>9/50 (18)</td>
</tr>
<tr>
<td>Laboratory variables, median (IQR)</td>
<td></td>
</tr>
<tr>
<td>Leucocyte count (cells/µL)</td>
<td>12 300 (7900–15 225)</td>
</tr>
<tr>
<td>Lymphocyte count (cells/µL)</td>
<td>620 (402.5–1073)</td>
</tr>
<tr>
<td>Monocyte count (cells/µL)</td>
<td>485 (205.0–927.5)</td>
</tr>
<tr>
<td>Neutrophil count (cells/µL)</td>
<td>10 110 (6163–13 813)</td>
</tr>
<tr>
<td>Haemoglobin level (g/dL)</td>
<td>9.8 (8.7–11.0)</td>
</tr>
<tr>
<td>Platelet count (×10³ cells/µL)</td>
<td>173.0 (86.8–242.3)</td>
</tr>
<tr>
<td>PaCO₂ (mm Hg)</td>
<td>42.0 (36.0–48.0)</td>
</tr>
<tr>
<td>PaO₂ (mm Hg)</td>
<td>77.5 (65.6–86.7)</td>
</tr>
<tr>
<td>FiO₂ (mm Hg)</td>
<td>0.6 (0.55–0.80)</td>
</tr>
<tr>
<td>PaO₂/FiO₂ ratio</td>
<td>119.0 (83.8–141.0)</td>
</tr>
<tr>
<td>Total protein level (g/dL)</td>
<td>5.5 (4.8–6.1)</td>
</tr>
<tr>
<td>Albumin (g/dL)</td>
<td>2.6 (2.3–2.9)</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>42.0 (22.0–78.0)</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>23.0 (13.5–60.5)</td>
</tr>
<tr>
<td>BUN (mg/dL)</td>
<td>29.8 (20.9–50.4)</td>
</tr>
<tr>
<td>Creatinine (mg/dL)</td>
<td>1.0 (0.7–1.69)</td>
</tr>
<tr>
<td>CRP level (mg/dL)</td>
<td>17.2 (9.1–27.2)</td>
</tr>
</tbody>
</table>

*included trauma, pancreatitis, and hepatitis.

ALT, alanine transaminase; ARDS, acute respiratory distress syndrome; AST, aspartate transaminase; BUN, blood urea nitrogen; CRP, C reactive protein; ECMO, extracorporeal membrane oxygenation; FiO₂, fraction of inspired oxygen; PaCO₂, partial pressure of arterial carbon dioxide; PaO₂, partial pressure of arterial oxygen; PaO₂/FiO₂ ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen; PEEP, positive end expiratory pressure.

Reduced numbers of circulating MAIT cells in patients with ARDS

The percentages and absolute numbers of MAIT cells in the peripheral blood samples from 50 patients with ARDS and...
50 HCs were determined by flow cytometry. All comparisons of the percentages and absolute numbers of MAIT cells were performed by analysis of covariance after adjusting for age and sex using the Bonferroni correction for multiple comparisons, as described in the Materials and methods section. MAIT cells were defined as CD3⁺γδ⁻ T cells expressing TCR Vα7.2 and CD161bigh (figure 1A; isotype control shown in online supplemental figure S1A). Percentages of MAIT cells were calculated within a CD8 T cell gate. (A) Representative MAIT cell percentages determined by flow cytometry. (B) MAIT cell percentages among peripheral blood CD8 T cells. (C) Absolute MAIT cell numbers (per microlitre of blood). Symbols represent individual subjects and horizontal lines are median values. *p<0.005, **p<0.0005 by the analysis of covariance (ANCOVA) test. ARDS, acute respiratory distress syndrome; HC, healthy control; MAIT, mucosal-associated invariant T.

Relationship between circulating MAIT cell levels and clinical parameters in patients with ARDS

To evaluate the clinical relevance of MAIT cell in patients with ARDS, we investigated the correlation between absolute MAIT cell numbers in peripheral blood and clinical parameters using regression analysis (table 2). Because the distributions were skewed, the absolute numbers of MAIT cells were log-transformed for the analysis. Linear regression analysis showed that log-transformed absolute numbers of MAIT cells were significantly correlated with disease severity, mortality, lymphocyte count, FiO2, fraction of inspired oxygen; MAIT, mucosal-associated invariant T; PaCO₂, partial pressure of arterial carbon dioxide; PaO₂, partial pressure of arterial oxygen; PaO₂/FiO₂, ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen; ECMO, extracorporeal membrane oxygenation; PEEP; plateau pressure; platelet count, total protein level, albumin level, aspartate aminotransferase level, alanine aminotransferase level; blood urea nitrogen level, creatinine level or C-reactive protein level (table 2).

Table 2 Regression coefficients for log-transformed absolute MAIT cell numbers with respect to clinical and laboratory findings in patients with ARDS

<table>
<thead>
<tr>
<th>Variables</th>
<th>β</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (male)</td>
<td>−0.579</td>
<td>−1.254 to 0.095</td>
<td>0.091</td>
</tr>
<tr>
<td>Age (years)</td>
<td>−0.007</td>
<td>−0.022 to 0.009</td>
<td>0.393</td>
</tr>
<tr>
<td>Disease severity</td>
<td>−0.746</td>
<td>−1.235 to −0.257</td>
<td>0.004</td>
</tr>
<tr>
<td>Mortality</td>
<td>−0.622</td>
<td>−1.169 to −0.075</td>
<td>0.027</td>
</tr>
<tr>
<td>PEEP (cmH₂O)</td>
<td>−0.022</td>
<td>−0.132 to 0.087</td>
<td>0.680</td>
</tr>
<tr>
<td>Plateau pressure (cmH₂O)</td>
<td>0.026</td>
<td>0.066 to 0.119</td>
<td>0.557</td>
</tr>
<tr>
<td>ECMO</td>
<td>0.178</td>
<td>−0.580 to 0.936</td>
<td>0.638</td>
</tr>
<tr>
<td>Leucocyte count (cells/µL)</td>
<td>0.0001</td>
<td>0.0001 to 0.001</td>
<td>0.076</td>
</tr>
<tr>
<td>Lymphocyte count (cells/µL)</td>
<td>0.0001</td>
<td>0.0001 to 0.001</td>
<td>0.012</td>
</tr>
<tr>
<td>Monocyte count (cells/µL)</td>
<td>0.0001</td>
<td>0.0001 to 0.001</td>
<td>0.440</td>
</tr>
<tr>
<td>Neutrophil count (cells/µL)</td>
<td>0.0001</td>
<td>0.0001 to 0.001</td>
<td>0.146</td>
</tr>
<tr>
<td>Haemoglobin (g/dL)</td>
<td>0.114</td>
<td>−0.073 to 0.302</td>
<td>0.227</td>
</tr>
<tr>
<td>Platelet count (10³ cells/µL)</td>
<td>0.001</td>
<td>−0.002 to 0.003</td>
<td>0.629</td>
</tr>
<tr>
<td>PaCO₂ (mm Hg)</td>
<td>0.009</td>
<td>−0.016 to 0.034</td>
<td>0.485</td>
</tr>
<tr>
<td>PaO₂ (mm Hg)</td>
<td>0.004</td>
<td>−0.007 to 0.015</td>
<td>0.503</td>
</tr>
<tr>
<td>FiO₂ (mm Hg)</td>
<td>0.0001</td>
<td>−0.007 to 0.008</td>
<td>0.605</td>
</tr>
<tr>
<td>PaO₂/FiO₂ ratio</td>
<td>0.010</td>
<td>0.003 to 0.016</td>
<td>0.004</td>
</tr>
<tr>
<td>Total protein (g/dL)</td>
<td>0.526</td>
<td>−0.164 to 1.216</td>
<td>0.132</td>
</tr>
<tr>
<td>Albumin (g/dL)</td>
<td>0.026</td>
<td>0.001 to 0.001</td>
<td>0.067</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>0.0001</td>
<td>−0.002 to 0.002</td>
<td>0.806</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>0.0001</td>
<td>−0.002 to 0.002</td>
<td>0.948</td>
</tr>
<tr>
<td>BUN (mg/dL)</td>
<td>0.0001</td>
<td>−0.002 to 0.002</td>
<td>0.885</td>
</tr>
<tr>
<td>Creatinine (mg/dL)</td>
<td>0.063</td>
<td>−0.168 to 0.293</td>
<td>0.588</td>
</tr>
<tr>
<td>CRP (mg/dL)</td>
<td>−0.002</td>
<td>−0.031 to 0.027</td>
<td>0.004</td>
</tr>
</tbody>
</table>

ALT, alanine transaminase; ARDS, acute respiratory distress syndrome; AST, aspartate transaminase; BUN, blood urea nitrogen; CRP, C reactive protein; ECMO, extracorporeal membrane oxygenation; FiO₂, fraction of inspired oxygen; MAIT, mucosal-associated invariant T; PaCO₂, partial pressure of arterial carbon dioxide; PaO₂, partial pressure of arterial oxygen; PaO₂/FiO₂, ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen; PEEP, positive end expiratory pressure; β, regression coefficient.
Increased production of IL-17 in circulating MAIT cells of patients with ARDS

To examine the cytokine production profiles in MAIT cells, peripheral blood mononuclear cells from 20 patients with ARDS and 20 HCs were incubated with PMA and IM for 1 hour and then the expression levels of IFN-γ, IL-17, and TNF-α in the MAIT cell population was determined by intracellular flow cytometry (Figure 2A). Proportions of single- or triple-cytokine producing MAIT cells. Symbols in (B) and (C) represent individual subjects and horizontal lines are median values. *p<0.01; **p<0.0005 by the ANCOVA test. ARDS, acute respiratory distress syndrome; HC, healthy control; IFN, interferon; IL, interleukin; MAIT, mucosal-associated invariant T; TNF, tumour necrosis factor.

Activation of MAIT cells in patients with ARDS

CD69 is known to be an early activation marker, whereas programmed cell death-1 (PD-1) is considered as a relative late activation marker. Following TCR activation, CD69 is upregulated within 4 hours, whereas coinhibitory receptors such as PD-1 and lymphocyte-activation gene-3 (LAG-3) are upregulated within 24–72 hours. These coinhibitory receptors are known to be synergistically involved in negative regulation of T cell activation. Moreover, coexpression of these multiple coinhibitory receptors has been reported to have a close association with anergy or exhaustion. To determine whether MAIT cells might be activated or exhausted in ARDS, expression levels of CD69, PD-1 and LAG-3 in circulating MAIT cells from 20 patients with ARDS, and 20 HCs were determined by flow cytometry (Figure 3A, D and G; isotype controls shown in online supplemental figure S1C). Percentages of CD69+ MAIT cells (i) patients with ARDS were determined using Spearman r (95% CI) correlation analysis. ARDS, acute respiratory distress syndrome; HC, healthy control; MAIT, mucosal-associated invariant T.
Increased MAIT cell numbers in bronchoalveolar lavage fluid from patients with ARDS

To examine whether circulating MAIT cell deficiency in patients with ARDS might be associated with the accumulation of MAIT cells in bronchoalveolar lavage (BAL) fluid, we obtained paired samples of peripheral blood and BAL fluid from nine patients. The percentages of MAIT cells were significantly higher in BAL fluid than in peripheral blood (median [IQR] 2.36 (1.69–3.20)% vs 0.55 (0.21–0.95)%, p<0.0001; figure 4A). Next, we analysed the percentages of CD69+ and PD-1+ expressing MAIT cells in paired peripheral blood and BAL fluid samples from seven patients. The percentages of both CD69+ and PD-1+ MAIT cells were significantly higher in BAL fluid compared with peripheral blood (median [IQR] 87.5 (79.1–97.6)% vs 41.7 (26.7–75.7)%, p<0.05; 45.7 (33.3–69.2)% vs 10.1 (6.67–37.3)%, p<0.05, respectively; figure 4B,C). To investigate whether the production of proinflammatory cytokines by MAIT cells is different between peripheral blood and BAL fluid, we measured IFN-γ, TNF-α and IL-17 in paired samples of peripheral blood and BAL fluid from six patients. The production of IL-17 was significantly higher in BAL fluid compared with peripheral blood (median [IQR] 23.5 (14.7–57.3)% vs 9.76 (6.52–12.6)%, p<0.05; figure 4F), but the production of IFN-γ and TNF-α by MAIT cells was comparable between peripheral blood and BAL fluid (figure 4D,E).

Expression of proinflammatory cytokines in human macrophage by activated MAIT cells

To determine whether activated MAIT cells could activate macrophage to produce proinflammatory cytokines such as TNF-α, IL-1β and IL-8, purified monocytes were cultured with M-CSF for 7 days to differentiate into macrophage and freshly isolated MAIT cells were stimulated with PMA and IM for 16 hours before cocultured with macrophages. Macrophages were cultured with resting MAIT cells (4×10⁶ cells/well), or activated MAIT cells (4×10⁶ cells/well) in the presence or absence of individual cytokine inhibitors and their combination (ie, blocking antibodies against a cocktail of IFN-γ, IL-17 and TNF-α). In the transwell systems, the activated MAIT cells and macrophages were seeded respectively into the upper and lower compartment of the transwell with 0.4 µm pores in the presence of M-CSF. (A) Time course of TNF-α, IL-1β and IL-8 production in macrophages. (B–D) Expression of TNF-α, IL-1β and IL-8 in macrophage determined by intracellular flow cytometry. Data in (B–D) were three independent experiments. Values are expressed as the mean±SEM. *p<0.05, **p<0.001, ***p<0.0001 by unpaired t-test. ARDS, acute respiratory distress syndrome; IFN, interferon; IL, interleukin; MAIT, mucosal-associated invariant T; TNF, tumour necrosis factor.
8.31%±0.72% vs 1.25%±0.10%, p<0.0001, for TNF-α; 11.4%±1.33% vs 0.95%±0.18%, p<0.0001, for IL-1β; 10.9%±1.86% vs 1.04%±0.22%, p<0.001, for IL-8) or resting MAIT cells with M-CSF (mean±SEM, 8.31%±0.72% vs 1.42%±0.13%, p<0.0001, for TNF-α; 11.4%±1.33% vs 1.16%±0.22%, p<0.0001, for IL-1β; 10.9%±1.86% vs 1.34%±0.36%, p<0.001, for IL-8, respectively; figure 5B–D).

Furthermore, when a cocktail of all blocking antibodies was added together with activated MAIT cells, each cytokine production of macrophages was significantly reduced compared with added together with activated MAIT cells, each cytokine production of macrophages. Finally, to determine whether the cytokine production of macrophages by activated MAIT cells is contact-dependent, a Transwell separation assay was performed. The percentage of cytokine-secreting macrophages tended to decrease in the Transwell experiment but did not reach statistical significance (figure 5B–D).

DISCUSSION

To the best of our knowledge, this is the first study to examine the levels and functions of MAIT cells in non-COVID-19 induced ARDS, evaluate the clinical relevance of MAIT cell levels, and investigate its association within macrophages, which are also essential for the process of the inflammatory response in acute lung injury and its severe form, ARDS. We found that the percentages and absolute numbers of circulating MAIT cells capable of producing Th1 cytokines were deficient in patients with ARDS. However, the IL-17 producing MAIT cells were found to be increased. We observed that patients with ARDS exhibited higher expression of CD69, PD-1 and LAG-3 by circulating MAIT cells. Of these surface activation markers, in particular, only PD-1 expression by MAIT cells was inversely correlated with their frequencies in patients with ARDS. We further observed that the expression of CD69, PD-1 and LAG-3 by circulating MAIT cells was higher in BAL fluid compared with peripheral blood from patients with ARDS. Notably, activated MAIT cells triggered the activation of macrophage that secreted proinflammatory cytokines such as TNF-α, IL-1β and IL-8. Overall, these findings indicate that MAIT cells might be a crucial immune modulator in the propagation of inflammation in the lung of patients with ARDS.

Our data showed that patients with ARDS displayed a decrease in circulating MAIT cells. These findings are consistent with previous studies of COVID-19-driven ARDS showing the decrease of peripheral blood MAIT cell levels in COVID-19 associated patients with ARDS. Unlike those studies, ours included only non-COVID-19 causes such as bacterial or viral infection, trauma, sepsis, interstitial lung disease and operation and so on. Most (about 60%) of the causes were bacterial pneumonia. However, there were no differences in the MAIT cell levels regarding the causes (infection vs non-infection; bacterial vs viral other than COVID-19), suggesting that MAIT cell decline is not specific for the causes of ARDS. This MAIT cell deficiency was also commonly observed in patients with infections and immune-mediated respiratory diseases. Of note, previous studies demonstrated that the drop was more prominent in patients with sepsis and severe asthma, which is consistent with our data revealing that the MAIT cell levels were inversely correlated with disease severity and mortality in patients with ARDS. Collectively, these results indicate that the reduction of MAIT cells could reflect the worsening of the lung inflammation that leads to the impaired oxygenation and subsequently affect mortality in patients with ARDS.

The present study showed that patients with ARDS display an increased secretion of IL-17 by circulating MAIT cells. Accumulating evidence suggests that human MAIT cells produce proinflammatory cytokines in a mixed Th1/Th17 pattern: most blood MAIT cells secrete Th1 type cytokines such as IFN-γ and TNF-α under TCR-mediated activation, while a small population of MAIT cells tends to produce Th17 type cytokines, including IL-17 and IL-22, in a TCR-independent manner. In agreement with our data, previous studies have shown that circulating MAIT cells displayed enhanced production of IL-17 in inflammatory bowel disease, asthma, ankylosing spondylitis and multiple sclerosis. Interestingly, circulating IL-17-producing MAIT cells are known to be associated with symptoms, including the number of severe exacerbations and asthma control test score, in children with asthma, indicating the involvement of IL-17-producing MAIT cells in asthma pathogenesis. Likewise, these findings suggest that the IL-17-producing MAIT cells potentially contribute to the pathogenesis of ARDS.

In the present study, the circulating MAIT cell depletion was accompanied by the upregulation of CD69, a kind of early activation markers, and PD-1 and LAG-3, which was implicated in the late activation or anergy/exhaustion of MAIT cells, respectively. These results are consistent with several previous studies in infectious, inflammatory and metabolic diseases. Interestingly, ex vivo blockade of PD-1/PD-L pathway resulted in reduction in TGF-β and IL-17A expression from CD4+ T cells, indicating that PD-1 upregulation on CD4+ T cells is directly associated with IL-17A and TGF-β production. The association between PD-1 and IL-17 has been also observed in CD8+ T cells from lung cancer and breast cancer. Collectively, these findings suggest that PD-1 upregulation may be associated with IL-17 upregulation in MAIT cells from patients with ARDS.

In this study, patients with ARDS displayed higher frequencies of MAIT cells in BAL fluid compared with peripheral blood, in line with several previous studies in pulmonary tuberculosis and community-acquired pneumonia. Notably, these MAIT cells showed a higher expression of both CD69 and PD-1 in BAL fluid than in peripheral blood. These findings led us to speculate that the activated MAIT cells might either undergo cell death or predominantly move into BAL fluid, resulting in the reduction of circulating MAIT cells. This speculation is partly explained by our data revealing that there was a significant negative correlation between the circulating MAIT cell level and their PD-1 expression. However, there is another possibility that explain this tendency such as cellular expansion of the resident MAIT cell population in BAL fluid. To clarify this, tracing labelled MAIT cells or compare the MAIT cell frequencies in BAL fluid between HC and patients with ARDS should be conducted, which is not possible in human studies. Additional experiments on animal models could illuminate these possibilities. Furthermore, these activated MAIT cells in BAL fluid secreted more IL-17 than those in peripheral blood. It is known that IL-17 recruits neutrophils and increases the permeability of alveolar endothelium as well as triggers the augmentation of other cytokines and inflammatory mediators, a critical pathological process involved in asthma, pseudomonas infection, and early exudative phase of ARDS. Collectively, our findings suggest that the activated MAIT cells could migrate into the lung, leading to the increased production of IL-17 that
subsequently contributes to the worsening of inflammation in the lung of ARDS.

It is widely known that macrophages are one of the main components involved in the pathophysiology of the early phase of ARDS. Under various stimuli, both tissue-resident alveolar macrophages and recruited monocyte-derived macrophages are differentiated into M1 macrophages. These M1 macrophages act as an initiator of immune responses by releasing several proinflammatory cytokines such as TNF-α, IL-1β and IL-8 that lead to trigger various immune cells. Our data showed that the activated MAIT cells induced the production of TNF-α, IL-1β and IL-8 by monocyte-derived macrophages. The cytokine production was normalised after treatment with a cocktail of all blocking antibodies against IFN-γ, IL-17 and TNF-α, produced by activated MAIT cells. Additional experiments using the Transwell system showed that the percentage of cytokine-secreting macrophages tended to decrease but did not reach statistical significance. These results suggest that activated MAIT cells may act on the macrophages in a cytokine-dependent manner rather than in contact-dependent manner. Furthermore, the single use of individual blocking antibodies showed no significant effect on the percentages of cytokine production in macrophages, implying that the combination of IFN-γ, IL-17 and TNF-α produced by MAIT cells but not alone may contribute to the activation of macrophages.

In conclusion, this study first demonstrates that circulating MAIT cells are numerically deficient in ARDS, and this MAIT cell deficiency reflects disease severity. In addition, we report a novel finding that MAIT cells are activated, migrate into lung, secrete IL-17 and then stimulate macrophages. These findings show the potential role of MAIT cells in the pathogenesis of ARDS and that MAIT cells can be a therapeutic target of ARDS.

Author affiliations
1Pulmonology, Chonnam National University Medical School and Hospital, Gwangju, Korea
2Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Korea
3Surgery, Chonnam National University Medical School and Hospital, Gwangju, Korea
4Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Korea
5Laboratory Medicine, Chonnam National University Bithgoeul Hospital, Gwangju, Korea

Contributors T-OK, K-JP, Y-NC, H-MJ, Y-GH, HSJ, JKJ, SJ-K and Y-WP designed this study, collected clinical information, analysed raw data, performed statistical analysis and contributed to writing of the paper. T-OK, K-JP, Y-NC and H-MJ performed experiments. Y-WP accepts full responsibility for the work and/or the conduct of the study, had access to the data, and controlled the decision to publish. All authors read and approved the final version of the manuscript.

Funding This study was supported by the National Research Foundation of Korea (2019R1A2C1003238, 2019R1A1A059600, 2018R1A6A3A11042850) and the Chonnam National University Hospital Biomedical Research Institute (CR180402-22).

Competing interests None declared.

Patient consent for publication Not applicable.

Ethics approval The study protocol was approved by the Institutional Review Board of Chonnam National University Hospital. Written informed consent was obtained from all participants in accordance with the Declaration of Helsinki.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request. All data relevant to the study are included in the article or uploaded as supplementary information. No data are available.

REFERENCES
Supplementary figure S1 Isotype controls for flow cytometry of MAIT cells, cytokines, and activation. Freshly isolated PBMCs were stained with APC-Cy7-conjugated anti-CD3, FITC-conjugated anti-TCR γδ, APC-conjugated anti-TCR Vα7.2, PE-Cy5-conjugated anti-CD161, PE-conjugated anti-CD69, FITC-conjugated anti-IFN-γ, PE-conjugated anti-IL-17, PE-Cy7-conjugated anti-TNF-α, FITC-conjugated mouse IgG isotype, PE-conjugated mouse IgG isotype, PE-Cy5-conjugated mouse IgG isotype control, APC-conjugated mouse IgG isotype control, and PE-Cy7-conjugated mouse IgG isotype control mAbs and then analyzed by flow cytometry. Representative dot plots of (A) MAIT cell percentages, (B) IFN-γ, IL-17, and TNF-α expression in MAIT cells, and (C) CD69-expression in MAIT cells were compared with the corresponding isotype controls.
Supplementary figure S2 Frequency of circulating MAIT cells according to the cause of ARDS. Freshly isolated PBMCs from ARDS caused by bacterial pneumonia (n = 31), viral pneumonia (n = 3), nonpulmonary sepsis (n = 6), aspiration (n = 7) and others (n = 3) were stained with APC-Cy7-conjugated anti-CD3, FITC-conjugated anti-TCR γδ, APC-conjugated anti-TCR Vα7.2, and PE-Cy5-conjugated anti-CD161 mAbs and then analyzed by flow cytometry. Percentages of MAIT cells were calculated within a αβ T cell gate. MAIT cell percentages among peripheral blood αβ T cells. Symbols represent individual subjects and horizontal lines indicate the median value with the interquartile range. Statistical analysis was performed using Kruskal-Wallis test.
Supplementary figure S3 Frequencies of circulating MAIT cell numbers in the peripheral blood of ARDS patients by sex. Freshly isolated PBMCs from 27 male and 23 female HCs, 39 male and 11 female patients with ARDS were stained with APC-Cy7-conjugated anti-CD3, FITC-conjugated anti-TCR γδ, APC-conjugated anti-TCR Va7.2, and PE-Cy5-conjugated anti-CD161 mAbs and then analyzed by flow cytometry. Percentages of MAIT cells were calculated within a αβ T cell gate. (A) MAIT cell percentages among peripheral blood αβ T cells. (B) Absolute MAIT cell numbers (per microliter of blood). Symbols represent individual subjects and horizontal lines are median values. * p < 0.05, ** p < 0.0005, *** p < 0.0001 by the Mann-Whitney U test.
Supplementary figure S4 Proportions of single-, double-, and triple-cytokine producing MAIT cells within HC and ARDS patients in the form of a pie-chart. Freshly isolated PBMCs (1 × 10^6/well) from 20 HCs and 20 patients with ARDS were incubated for 1 hour in the presence of PMA (100 ng/ml) and IM (1 μM). IFN-γ, IL-17, and TNF-α expression in the MAIT cell population was determined by intracellular flow cytometry. Expression pattern of MAIT cells producing the indicated cytokines on pie chart with color code. Values are expressed as mean.

Supplementary methods

Monoclonal antibodies (mAbs) and flow cytometry

The following mAbs and reagents were used in this study: allophycocyanin (APC)-Cy7-conjugated anti-CD3, phycoerythrin (PE)-Cy5-conjugated anti-CD161, fluorescein isothiocyanate (FITC)-conjugated anti-TCR γδ, FITC-conjugated anti-CD3, FITC-conjugated anti-IFN-γ, FITC-conjugated anti-TNF-α, PE-conjugated anti-IL-1β, PE-conjugated anti-IL-8, PE-conjugated anti-IL-17, PE-Cy7-conjugated anti-TNF-α, PE-conjugated anti-CD69, PE-conjugated anti-lymphocyte-activation gene3 (anti-LAG3), FITC-conjugated mouse IgG isotype, PE-conjugated mouse IgG isotype, and PE-Cy7-conjugated mouse IgG isotype control (all from Becton Dickinson); PE-conjugated anti-programmed cell death-1 (anti-PD-1; eBioscience); APC-conjugated anti-TCR Vα7.2 (BioLegend). Cells were stained with combinations of
appropriate mAbs for 20 minutes at 4°C. Stained cells were analyzed on a Navios flow cytometer using Kaluza software (Beckman Coulter).

Isolation of peripheral blood mononuclear cells (PBMCs) and identification of MAIT cells

Peripheral venous blood samples were collected in heparin-containing tubes and PBMCs were isolated by density-gradient centrifugation using Ficoll-Paque Plus solution (Amersham Bioscience). MAIT cells were identified phenotypically as CD3⁺TCRγδ⁻Vα7.2⁺CD161⁺ by flow cytometry as previously described.¹-³ Total lymphocyte numbers were measured with a Coulter LH750 automatic hematology analyzer (Beckman Coulter). Absolute numbers of MAIT cells were calculated by multiplying MAIT cell percentages by CD3⁺γδ⁻ T cell percentages and total lymphocyte numbers (per microliter) in peripheral blood.

Functional MAIT cell assay

Expression levels of IFN-γ, IL-17 and TNF-α in MAIT cells were detected by intracellular cytokine flow cytometry as previously described.¹ ⁴-⁷ Freshly isolated PBMCs (1 × 10⁶ cells/well) were incubated in 1 mL complete media consisting of RPMI 1640, supplemented with 10% fetal bovine serum (FBS; Gibco BRL), 2 mM L-glutamine, 100 units/mL of penicillin, and 100 μg/mL of streptomycin for 1 hours in the presence of phorbol myristate acetate (PMA; 100 ng/mL; Sigma) and ionomycin (IM; 1 μM; Sigma). For intracellular cytokine staining, 10 μL of brefeldin A (GolgiPlug; BD Biosciences) was added. The final concentration of brefeldin A was 10 μg/mL. After incubation for an additional 4 hours, cells were stained with APC-Alexa Fluor 750-conjugated anti-CD3, PE-Cy5-conjugated anti-CD161, and APC-conjugated anti-TCR Vα7.2 mAb for 20 minutes at 4°C, fixed in 4% paraformaldehyde for 15 minutes at room
temperature, and permeabilized with Perm/Wash solution (BD Biosciences) for 10 minutes. Cells were then stained with FITC-conjugated anti-IFN-γ, PE-conjugated anti-IL-17, and PE-Cy7-conjugated anti-TNF-α mAbs for 30 minutes at 4°C and analyzed by flow cytometry.

Coculture system for human macrophage activity assay

Monocytes were differentiated into macrophage using coculture system as described previously. Briefly, monocytes were isolated from PBMCs at purities of >95% using CD14 MicroBeads according to the instructions of the manufacturer (Miltenyi Biotec). Monocytes were seeded in a 6-well plate at 2.5 × 10^6 cells/well and cultured for 6 days in the presence of macrophage colony-stimulating factor (M-CSF; 100 ng/mL; PeproTech). Half medium was replaced at day 3 of culture. MAIT cells were isolated from PBMCs using a cell sorter (MoFlo Astrios; Beckman Coulter), and were activated in the presence of PMA (100 ng/mL; Sigma) and IM (1 μM; Sigma) for 16 hours before coculture with macrophages. After 6 days, macrophages were cultured with resting MAIT cells (4 × 10^5 cells/well), or activated MAIT cells (4 × 10^5 cells/well) in the presence of M-CSF for 6, 12, 24, and 48 hours. After coculture, 10 μL of brefeldin A (BD Biosciences) was added for intracellular cytokine staining. The final concentration of brefeldin A was 10 μg/mL. After incubation for an additional 4 hours, the cells were fixed in 4% paraformaldehyde for 15 minutes at room temperature, and permeabilized with Perm/Wash solution (BD Biosciences) for 10 minutes. Cells were then stained with FITC-conjugated anti-TNF-α, PE-conjugated anti-IL-1β, and PE-conjugated anti-IL-8 mAbs for 30 minutes at 4°C and analyzed by flow cytometry. **Blocking antibodies for cytokines included anti-IL-17 (5 μg/mL; R&D Systems), anti-IFN-γ (10 μg/mL; BD biosciences) and anti-TNF-α (10 μg/mL; BD biosciences). In the transwell systems, the activated MAIT cells and macrophages were seeded**
respectively into the upper and lower compartment of the transwell with 0.4 μm pores (Corning Costar) in the presence of M-CSF.

Statistical analysis

All comparisons of percentages, absolute numbers, cytokine levels and ratios of MAIT cells, and expression levels of CD69, PD-1, and LAG3 were performed by analysis of covariance (ANCOVA) after adjusting for age and sex using Bonferroni correction for multiple comparisons. Linear regression analysis was used to test associations between MAIT cell levels and clinical or laboratory parameters. Wilcoxon matched-pairs signed rank test was used for comparison of total MAIT cell, CD69+ MAIT cell, and PD-1+ MAIT cell percentages and cytokine levels between peripheral blood and synovial fluid. Unpaired t-tests were used to compare changes in the expression of pro-inflammatory cytokines from human macrophages. Statistical significance was considered when p value was less than 0.05. All statistical analyses were performed using SPSS version 26.0 software (SPSS). GraphPad Prism version 5.03 software (GraphPad Software) was used for graphic works.

REFERENCES

7. Gong Q, Wu F, Pan X, et al. Soluble C-X-C chemokine ligand 16 levels are increased in gout patients. *Clin Biochem* 2012;45(16-17):1368-73. doi: 10.1016/j.clinbiochem.2012.05.014 [published Online First: 2012/05/26]