Conclusions Presence of cavitation on CT at diagnosis was strongly associated with use of anti-NTM antimicrobials, confirming findings of a previous South Korean study. The proportion of patients receiving NTM treatment was no different between our two time periods. Interestingly, systemic immuno-suppression (pathological or iatrogenic) was not associated with either need to commence treatment or negative outcomes, but treatment was less likely to improve symptoms in those ≥80. A better understanding of who benefits from antimicrobial treatment for NTM-PD would aid patients and clinicians in making decisions about when to initiate therapy.

REFERENCE

Abstract P32 Table 1 Frequency of clinically significant rash within first month of treatment by ATT regimen, January 2016 to February 2021

<table>
<thead>
<tr>
<th>ATT regimen</th>
<th>Patients n</th>
<th>Rash requiring intervention n (%)</th>
<th>Rapid onset (≤ 1 hour) n (% of rash)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voractiv</td>
<td>110</td>
<td>6 (5.5)</td>
<td>4 (67)</td>
</tr>
<tr>
<td>Rifater+E</td>
<td>143</td>
<td>8 (5.6)</td>
<td>1 (12.5)</td>
</tr>
<tr>
<td>Rifinah+Z+E</td>
<td>125</td>
<td>6 (4.8)</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>378</td>
<td>20 (5.3)</td>
<td>5 (25)</td>
</tr>
</tbody>
</table>

P32

CUTANEOUS ADVERSE DRUG REACTIONS TO ANTI-TUBERCULOSIS THERAPY – AN ISSUE FOR FIXED-DOSE COMBINATION TREATMENTS?


10.1136/thorax-2021-BTSabstracts.142

Introduction Fixed dose combination (FDC) tablets for first-line anti-TB treatment (ATT) enable simple prescribing of multiple drugs with reduced pill burden. Cutaneous adverse drug reactions (CADR), can occur to both the individual components and the excipient ingredients. We noted rapid-onset severe rash appearing with Voractiv (Rifampicin, Isoniazid, Pyrazinamide, Ethambutol FDC) in some patients - prompting an assessment of CADR with different ATT drug combinations.

Methods We conducted a retrospective review of TB disease cases commencing standard 4-drug therapy January 2016 to February 2021. Patients were categorised by regimen: Voractiv only; Rifater (Rifampicin, Isoniazid, Pyrazinamide FDC) plus Ethambutol (E); and Rifinah (Rifampicin, Isoniazid FDC) plus Pyrazinamide (Z) and Ethambutol. Records were examined for history of clinically-significant rash in the first month of treatment (that prompted either treatment interruption or use of adjunct medications). Data were analysed with Chi-square & Fisher’s exact tests.

Results 378 patients were assessed. Median age was 39 years, 44.2% were female. Main ethnic groups were Black-African (24.6%), White (20.1%), and Indian (18.5%). Moderate or severe rash within 1 month occurred in 5.3% (table 1). There was no clear relationship between this and age, sex, ethnicity, past medical history, or HIV/TB coinfection. Although frequency of rash requiring intervention was similar across the three cohorts, more rapid-onset rashes (less than an hour after first dose) were seen with Voractiv (p = 0.03).

There was no standard approach to investigation of rash including eosinophil counts and liver function testing, impairing our ability to detect systematic events. 5 of 6 Voractiv, 6/8 Rifater+E, and 4/6 Rifinah+Z+E cases had treatment reinintroduction, though in only 2 was this with the original FDC. In 11 of 15, a culprit drug was omitted: Pyrazinamide (in 5), Isoniazid (3), Rifampicin (2), Ethambutol (1). Four continued without interruption receiving oral antihistamines and occasionally topical steroids; one had no intervention documented.

Conclusion Despite convenience, our review suggests some FDCs may be associated with rapid-onset rash. Investigation of CADR was hampered by a lack of standardised management. If implemented, this would ensure consistency, plus early detection of systemic reactions and issues with specific drug batches.

P33

A RETROSPECTIVE REVIEW OF THE INVESTIGATION INTO PATIENTS WITH POSITIVE CULTURES FOR NON-TUBERCULOUS MYCOBACTERIA (NTM). JUST HOW MUCH WORK IS IT?


10.1136/thorax-2021-BTSabstracts.143

Introduction NTM patients are an increasing part of the workload of the mycobacterium service. Diagnosis can be challenging and often requires repeated samples, radiology and clinic attendances, all of which produces a significant workload on the multi-disciplinary team. In our hospital serving a population of ~270,000, this is done by the mycobacterium service, primarily set up to manage mycobacterium tuberculosis (MTB). We conducted a workload analysis for NTM in our service, with a view to assess and improve our performance.

Methods Data were collected retrospectively for all patients with a positive culture result for NTM between Nov 2017 and Dec 2020. For each patient, total number of samples sent, number of positive samples, radiology results, presence of symptoms, and whether they were assessed by the mycobacterium service were collected. Patients were then assessed against the British Thoracic Society (BTS) criteria for NTM disease.

Results Our centre received 358 positive cultures for NTM from 154 patients (81 (53%) male, 73 female; ages 3 months to 91 years with 3 under 18, median 53 years). There were 1–14 positive cultures/patient (median 1) and 89 (58%) patients had only one positive culture. 15 different NTM were identified. 11 patients had 2 or more different NTM. 6 patients had NTM/MTB coinfection. M.avium complex accounted for 63 (38%) of the 168 patient unique isolates (M.avium 45, M.chimera 16, M.intracellulare 2), followed by M.abcussus/M.chelonae 24 (14%), M.fortuitum 19 (11%), M.kansasii 15 (8.9%), M.gordonae 10 (6%), 10 were not identified by whole genome sequencing. Almost all positive cultures were sputum, 7 bronchoalveolar lavage, 3 pus, 3 early morning urine, 1 blood culture. Patients with more than one culture had CT imaging. Most patients had comorbidities: 8 cystic fibrosis, 10 HIV. 31 patients were treated for NTM disease.