In this small cohort, ICNB potentially has a role in reducing pain, LOS and analgesia use and allows LAT to be more tolerable, and may widen the scope of procedures possible during LAT.

REFERENCES

Asthma: phenotyping and the response to biologics

P200 URINARY LEUKOTRIENE E4 AS A BIOMARKER IN NSAID EXACERBATED RESPIRATORY DISEASE (N-ERD): A SYSTEMATIC REVIEW AND META-ANALYSIS

1. Taylor R, 2M Marquette, 3PC Calder, 4PJ Curtis, 5AM Wilson. Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, UK; 2University of East Anglia, Norwich, UK; 3University of East Anglia, Norwich, UK; 4University of Southampton, Southampton, UK

Introduction NSAID exacerbated respiratory disease (N-ERD) - formerly aspirin-induced asthma (AIA), is an asthma phenotype characterised by increased leukotriene production. Urinary Leukotriene E4 (uLTE4) indicates cysteinyl leukotriene production and activity.

Objectives To evaluate whether baseline uLTE4 in N-ERD are different from post-aspirin challenge uLTE4 in AIA and whether baseline uLTE4 in N-ERD are different from aspirin-tolerant asthma (ATA) patients and healthy controls (HC).

Methods A systematic literature search (Medline, EMBASE, EMCARE, CINAHL, PsychINFO) was performed from database inception to January 2021, to identify 1) studies reporting baseline uLTE4 in both AIA/N-ERD and ATA asthmatics, and 2) uLTE4 pre- and post-aspirin challenge tests. Meta-analysis was performed (i.e. pooled standardised mean difference (SMD) with 95% confidence intervals (95% CI)) and risk of bias assessed (implementing Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy).

Results Of 522 study records reviewed, qualitative synthesis and meta-analysis were performed on n=36 and n=33 studies respectively (Meta-analysis; n = 1273 AIA, 1305 ATA, and 582 HV across 8 countries). Criteria for aspirin intolerance were (i) positive aspirin challenge alone (n=26), (ii) convincing clinical history (n=2), and (iii) either challenge or history (n=8). Methodologies used for uLTE4 analysis were (i) Amer sham-enzyme immunoassay (A-EIA) (n=8), (ii) Cayman-enzyme immunoassay (C-EIA) (n=18), (iii) mass spectrometry (MS) (n=5), and (iv) radioimmunoassay (RIA) (n=6). uLTE4 was higher in AIA vs ATA (SMD: 0.80; 95% CI: 0.71–0.89) and distinguished ATA from HC (SMD: 0.52; 95% CI: 0.23–0.81). For studies reporting uLTE4 at baseline and post-challenge, uLTE4 increased following aspirin challenge in AIA (n=12, SMD: 0.56; 95% CI: 0.26–0.85) but not ATA (n=8, SMD: 0.12; CI: -0.08–0.33). Risk of bias was acceptable across all studies, however 30.6% of quality assessment items were unfulfilled.

Conclusions This comprehensive systematic review and meta-analysis showed that uLTE4 is significantly higher in N-ERD than ATA or HC. Likewise, people with N-ERD have greater increases in uLTE4 following aspirin challenge. Because of heterogeneity, and lack of original data point reporting, diagnostic accuracy evaluation for uLTE4 was not possible. In patients not fit to undergo confirmatory challenge tests for N-ERD, uLTE4 can serve as a useful adjunct to diagnostic process.

Please refer to page A193 for declarations of interest related to this abstract.

P201 TO WHAT EXTENT DOES THE prototype ORACLE SCALE PREDICT TREATMENT BENEFITS? PREDICTED VERSUS OBSERVED IMPACT OF ANTI-INFLAMMATORY TREATMENTS

1S Couillard, 1WH Do, 2B Beasley, 3A Laugierud, 1S Ramakrishnan, 1J Melhorn, 1TSC Hinks, 1ID Pavord, 2University of Oxford, Oxford, UK; 2Medical Research Institute of New Zealand, Wellington, New Zealand; 3Sanofi Norway, Oslo, Norway

Background We have derived a prototype asthma attack risk scale (ORACLE) 1 centred on the peripheral blood eosinophil count and exhaled nitric oxide (FeNO). We speculate that the excess risk identified by raised biomarkers would be equivalent to the benefits of specific anti-inflammatory treatment.

Objective To assess whether the treatment effect conferred by raised blood eosinophils and FeNO is predicted by ORACLE.

Methods Observed biomarker-stratified annualised severe asthma attack rates of patients randomised to control and anti-inflammatory treatment arms were extracted from the Novol START (as needed salbutamol vs low dose regular or as needed ICS), CAPTAIN (Fluticasone furoate (FF) 100 vs 200µg/d-containing arms), QUEST (placebo vs Dupilumab 200mg/2w), and DREAM (placebo vs any mepolizumab) studies. Observed rate ratios were calculated between control and active arm attack rates in patients with any raised type-2 biomarker at baseline (blood eosinophils >0.15×10^9/L or FeNO ≥25 ppb) and those with none (blood eosinophils <0.15×10^9/L and FeNO <25 ppb). The predicted biomarker-stratified attack rates were calculated based on our hypothesis that type-2 high asthma has an anti-inflammatory treatment effect equal to moving from any biomarker high stratum’s predicted risk to the biomarker low stratum’s predicted risk.

Results The Table shows the observed vs ORACLE-predicted biomarker-stratified annual asthma attack rates and anti-