Methods Clinical observations data were extracted from electronic data records for 31590 respiratory in-patient episodes (53.5% female, mean age 69.9) at a large acute NHS Trust from 1st April 2015 to 31st December 2020, comprising 1037349 date and time-stamped observation sets. 786 in-patient episodes comprising 52300 observation sets were annotated manually following reference to the medical case-notes. Clinical deterioration was defined as a specific event (eg. hospital-acquired pneumonia) requiring a change in treatment (eg. antibiotics). Development of DEWS used similar methodology to Zhu et al (Resuscitation, 2020; 157: 176–84). Continuous variables were divided into two separate variables corresponding to high or low values. Time series features including rolling average, standard deviation and trend over previous observations were entered into a logistic regression model. For death or ICU admission within 24 hours, data from 2015–2019 and 2020 were used for model training and validation respectively. For clinical deterioration within 4 hours, Results presented are for the training dataset (validation dataset is pending).

Results Death or ICU admission occurred within 24 hours of 2.3% of observations sets. The area under the receiver operating curve (AUC [95% confidence interval]) for predicting death or ICU admission within 24 hours was 0.903 (0.897 – 0.911) for DEWS versus 0.862 (0.859 – 0.865) for NEWS2 in the training dataset, and 0.901 (0.892 – 0.908) for DEWS versus 0.854 (0.849 – 0.858) for NEWS2 in the validation dataset. Clinical deterioration occurred within 4 hours of 6.6% of observation sets. The AUC for predicting clinical deterioration within 4 hours was 0.861 (0.842 – 0.878) for DEWS versus 0.793 (0.783 – 0.801) for NEWS2.

Conclusions DEWS has superior performance compared to NEWS2 with respect to predicting death or ICU admission within 24 hours, and clinical deterioration within 4 hours, in respiratory patients.

Please refer to page A188 for declarations of interest related to this abstract.

S18 INVESTIGATING THE IMPACT OF INFLUENZA ACTIVITY ON EXCESS MORTALITY RATES FROM CARDIOVASCULAR, RESPIRATORY AND RENAL DISEASES IN IRELAND DURING THE 2010/11–2019/20 INFLUENZA SEASONS

1JX Choo, 2, 3J Harbison. 1School of Medicine, Trinity College Dublin, Dublin, Ireland; 2Mercer’s Institute for Successful Ageing, St. James’s Hospital, Dublin, Ireland; 3Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland

10.1136/thorax-2021-BTSabstracts.24

Introduction COVID-19 and influenza infection are associated with cardiovascular, respiratory and renal complications. However, cardiovascular, respiratory and renal disease mortality rates in Ireland decreased by 0.04%, 0.12% and 0.12% respectively in 2020 relative to 2019, despite nearly 100,000 new COVID-19 cases being reported in Ireland in 2020. Government-imposed social distancing measures resulted in abolition of influenza activity (IA). We analysed population data from the 2010/11–2019/20 influenza seasons to estimate the impact of reduced IA on cardiovascular, respiratory and renal disease mortality rates during the COVID-19 pandemic season.

Methods Quarterly mortality data for acute myocardial infarction (AMI), cerebrovascular disease, pneumonia, asthma and renal disease from first quarter (Q1) 2010 to fourth quarter (Q4) 2020 was obtained from the Central Statistics Office.