COPD discharge bundle and pulmonary rehabilitation referral and uptake following hospitalisation for acute exacerbation of COPD

Ruth E Barker,1,2,3 Samantha SC Kon,1,3 Stuart F Clarke,3 Jenni Wenneberg,3 Claire M Nolan,1 Suhani Patel,1 Jessica A Walsh,1,4 Oliver Polgar,1,4 Matthew Maddocks,4 Morag Farquhar,5 Nicholas S Hopkinson,6,7 Derek Bell,6 Jadwiga A Wedzicha,2 William D-C. Man,1,2

INTRODUCTION

Pulmonary rehabilitation (PR) following hospitalisations for acute exacerbation of COPD (AECOPD) is associated with improved exercise capacity and quality of life, and reduced readmissions. However, referral for, and uptake of, post-hospitalisation PR are low. In this prospective cohort study of 291 consecutive hospitalisations for AECOPD, COPD discharge bundles delivered by PR practitioners compared with non-PR practitioners were associated with increased PR referral (60% vs. 12%, p<0.001; adjusted OR: 14.46, 95% CI: 5.28 to 39.57) and uptake (40% vs. 32%, p=0.001; adjusted OR: 8.60, 95% CI: 2.51 to 29.50). Closer integration between hospital and PR services may increase post-hospitalisation PR referral and uptake.

METHODS

This prospective cohort study included consecutive hospital episodes for an AECOPD at Harefield Hospital, London, UK, from 1 April 2018 to 31 March 2019 and was considered service evaluation by the Health Research Authority. Patients admitted previously during the study period (and therefore already included in the data collection) were excluded.

Patients were classified according to three exposures (no COPD discharge bundle received; COPD discharge bundle received from a current PR practitioner; COPD discharge bundle received from a practitioner with no involvement in PR) and followed-up for 4 weeks after hospital discharge. All COPD discharge bundles (online supplemental figure E1) were delivered by a hospital-based multi-disciplinary respiratory team with responsibility for early supported discharge, admission avoidance and community respiratory clinics. Two out of six team members were current PR practitioners, defined as someone also employed to deliver PR (assessments and/or supervision of classes) for a minimum 20% of their job plan. The research team played no involvement in exposure allocation (no randomisation, no influence on care team assignment). The clinical team delivering the bundle were blinded to the study objectives.

The outcomes were referral for PR (defined as a referral received by PR service) and uptake of PR (defined as the proportion of those referred attending a PR assessment) within 4 weeks of hospital discharge.

Covariates were selected a priori as patient or hospital admission variables which have been shown to be predictors of non-referral and non-uptake of post-hospitalisation PR, including age, length of hospital stay and index of multiple deprivation (IMD) (http://imd-by-postcode.opendata-UK.com/).

The sample size calculations are available in the (online supplemental data). Outcomes were compared between the two COPD discharge bundle exposure groups using independent t-test (or Mann-Whitney for non-normally distributed data) or χ^2 tests. Associations were investigated using logistic regression. Adjusted ORs with 95% CIs were estimated with p values<0.05 considered significant, with all clinically relevant covariates inputted into the model using the enter method.

RESULTS

Of 411 hospital episodes screened, 120 were excluded (24 were due to the patient being ineligible for PR and 96 as it was a readmission of a
Table 1 Baseline characteristics of cohort according to COPD discharge bundle exposure status

<table>
<thead>
<tr>
<th>Variable</th>
<th>No bundle received (n=63)</th>
<th>Bundle received from a hospital practitioner involved in PR delivery (n=25)</th>
<th>Bundle received from a hospital practitioner with no involvement in PR (n=203)</th>
<th>Between group comparison for those who received bundles (p value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>72 (9)</td>
<td>72 (11)</td>
<td>72 (9)</td>
<td>0.975</td>
</tr>
<tr>
<td>Male (n (%))</td>
<td>29 (46)</td>
<td>12 (48)</td>
<td>105 (52)</td>
<td>0.725</td>
</tr>
<tr>
<td>FEV1 % predicted</td>
<td>42 (26 to 62)</td>
<td>41 (30 to 63)</td>
<td>37 (26 to 48)</td>
<td>0.131</td>
</tr>
<tr>
<td>Smoking status:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never / former / current (n (%))</td>
<td>2 (3) / 42 (67) / 18 (29)</td>
<td>1 (4) / 17 (68) / 7 (28)</td>
<td>1 (1) / 132 (65) / 70 (34)</td>
<td>0.180</td>
</tr>
<tr>
<td>Median (IQR) duration of inpatient stay (days)</td>
<td>4 (2 to 9)</td>
<td>3 (2 to 8)</td>
<td>3 (1 to 6)</td>
<td>0.438</td>
</tr>
<tr>
<td>Review of respiratory specialist within 24 hours (n (%))</td>
<td>44 (70)</td>
<td>24 (96)</td>
<td>203 (100)</td>
<td>0.116</td>
</tr>
<tr>
<td>Non-invasive or invasive ventilation required during admission (n (%))</td>
<td>4 (6)</td>
<td>5 (20)</td>
<td>23 (11)</td>
<td>0.213</td>
</tr>
</tbody>
</table>

Data expressed as mean (SD) or median (IQR) unless otherwise stated; Independent t-test (or Mann-Whitney for non-normally distributed data) or χ^2 test was used to compare groups according to involvement in PR delivery of the hospital practitioner delivering the bundle for those who receive bundles.

Increased referrals for post-hospitalisation PR. A novel aspect of our study examined whether the role of the practitioner delivering the bundle is influential. Intriguingly, we demonstrated that referral rates were significantly increased when the practitioner delivering the bundle also had responsibilities for delivering PR. Although this could simply represent referrer bias, we were reassured to also observe a higher PR uptake rate in those patients referred by current PR practitioners. After multivariate analysis, taking into account potential confounders such as patient demographics and hospital admission factors, the practitioner’s current involvement in delivering PR remained an independent predictor for both increased PR referral and uptake (table 2). We did not collect data on patient face-to-face exposure time with healthcare professionals but there was no difference between the COPD bundle groups in the proportion receiving specialist respiratory review within 24 hours of admission (table 1). Furthermore, respiratory outpatient review took place at 6 weeks post-discharge, and therefore did not influence the primary outcomes (uptake and referral within 28 days of discharge).

One explanation for our observation includes increased referrer knowledge about local referral pathways and processes. Referrer knowledge and attitudes may also influence the increased referrals for post-hospitalisation PR. **

**

A novel aspect of our study examined whether the role of the practitioner delivering the bundle is influential. Intriguingly, we demonstrated that referral rates were significantly increased when the practitioner delivering the bundle also had responsibilities for delivering PR. Although this could simply represent referrer bias, we were reassured to also observe a higher PR uptake rate in those patients referred by current PR practitioners. After multivariate analysis, taking into account potential confounders such as patient demographics and hospital admission factors, the practitioner’s current involvement in delivering PR remained an independent predictor for both increased PR referral and uptake (table 2). We did not collect data on patient face-to-face exposure time with healthcare professionals but there was no difference between the COPD bundle groups in the proportion receiving specialist respiratory review within 24 hours of admission (table 1). Furthermore, respiratory outpatient review took place at 6 weeks post-discharge, and therefore did not influence the primary outcomes (uptake and referral within 28 days of discharge).

One explanation for our observation includes increased referrer knowledge about local referral pathways and processes. Referrer knowledge and attitudes may also influence the
patient-referrer interaction, which in turn shape the patient's understanding and demystify their expectations of PR. Knowledge is frequently identified as a barrier/enabler for PR referral and participation.11 We propose that further research is needed to test whether improving referrer knowledge and experience, perhaps through formal training or closer integration between hospital and PR practitioners, can increase referral and uptake for post-hospitalisation PR. This is particularly important given the paucity of effective interventions that address this area.9

A limitation was that this was a single-centre study with small number of practitioners involved, and therefore our results may not be generalisable. However, our results seem mechanistically plausible, and we are confident about the accuracy of the exposure data as the recruiting hospital was financially incentivised to keep rigorous audit records around bundle completion. Furthermore, as the recruiting hospital was served by a single PR service, collection of PR outcome data was simplified. Another limitation is that our study used routinely collected data as part of service evaluation and audit. It is possible that our findings could be explained by confounding factors not collected in our data set, with differences in patient knowledge, beliefs and attitudes between the exposure groups potentially relevant.11

In summary, we have demonstrated that COPD discharge bundles are associated with increased referral and uptake rates for post-hospitalisation PR. In particular, COPD discharge bundle delivered by a practitioner delivering PR within their workplan is an independent predictor of PR referral and uptake. Closer integration between clinical services could increase post-hospitalisation PR referral and uptake.

Twitter Claire M Nolan @clairemnolan84, Suhani Patel @suhani_patel1, Nicholas S Hopkinson @COPDdoc and William D-C. Man @toplungdoc

Acknowledgements We would like to express our gratitude to the patients for participating in this study. We would also like to thank the staff of the Hillingdon Integrated Respiratory Service for their support with data collection.

Contributors Concept and design of Study: REB, MM, MF, JAW, WM; Acquisition of Data: REB, SSCK, SFC, WM; Analysis of Data: REB and WM; Interpretation of Data: All authors; Drafting and revisions of Manuscript: All authors; Final approval of Manuscript: All authors; Guarantor: WM.

Funding This paper presents independent research funded by the National Institute for Health Research (NIHR) under its Clinical Doctoral Fellowship Programme (Fellowship Reference Number ICA-CDRF-2017-03-018). The funder had no role in the collection, analysis and interpretation of the data; the funder had no role in the writing of and decision to publish this report. The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care. REB is funded by a NIHR Clinical Doctoral Research Fellowship (ICA-CDRF-2017-03-018); CMN was funded by a NIHR Doctoral Research Fellowship (DRF-2014-07-089) and a NIHR Clinical Trials Fellowship (CTF-2017-06-005); MM is funded by a NIHR Career Development Fellowship (CDF-2017-10-009) and NIHR Applied Research Collaboration South London; MF is currently part-funded by the NIHR Applied Research Collaboration East of England programme.

Competing interests REB, SSCK, SFC, JW, CMN, SEL, SP, JAW, MM, MF and NSH have no competing interests to report. WM reports personal fees from Jazz Pharmaceuticals, personal fees from Mundipharma, personal fees from Novartis, grants from Pfizer, non-financial support from GSK, grants from National Institute for Health Research, grants from British Lung Foundation, outside the submitted work.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

ORCID iDs Ruth E Barker http://orcid.org/0000-0002-7022-0194 Claire M Nolan http://orcid.org/0000-0001-9067-599X Jessica A Walsh http://orcid.org/0000-0002-9103-3945 Oliver Polgar http://orcid.org/0000-0002-1320-2096 Nicholas S Hopkinson http://orcid.org/0000-0003-3235-0454 William D-C. Man http://orcid.org/0000-0002-3782-659X

REFERENCES

ONLINE DATA SUPPLEMENT

Title
COPD discharge bundle and pulmonary rehabilitation referral and uptake following hospitalisation for acute exacerbation of COPD

Authors
Ms Ruth E Barker1,2,3 r.barker2@rbht.nhs.uk (ORCID: 0000-0002-7022-01)
Dr Samantha S. C. Kon1,3 s.kon@rbht.nhs.uk / s.kon@nhs.net
Mr Stuart F Clarke3 stuart.clarke4@nhs.net
Ms Jenni Wenneberg3 jenni.wenneberg@nhs.net
Dr Claire M Nolan1 c.nolan@rnht.nhs.uk
Ms Suhani Patel1 s.patel1@rbht.nhs.uk
Ms Jessica A Walsh1 j.walsh@rbht.nhs.uk
Mr Oliver Polgar1 o.polgar@rbht.nhs.uk
Dr Matthew Maddocks4 matthew.maddocks@kcl.ac.uk
Dr Morag Farquhar5 m.farquhar@uea.ac.uk
Dr Nicholas S Hopkinson2 n.hopkinson@ic.ac.uk
Prof Derek Bell6 d.bell@imperial.ac.uk
Prof Jadwiga A Wedzicha2 j.wedzicha@imperial.ac.uk
Dr William D-C Man1,2 w.man@rbht.nhs.uk

Corresponding Author
Ms Ruth E Barker, NIHR Clinical Doctoral Research Fellow
Address: Royal Brompton and Harefield NHS Foundation Trust, Harefield Respiratory Research Group, Harefield Hospital, Middlesex, UB9 6JH, United Kingdom

Email: r.barker2@rbht.nhs.uk
COPD discharge bundle

The COPD discharge bundle is a structured list of evidence-based practices delivered prior to hospital discharge following admission for an acute exacerbation of chronic obstructive pulmonary disease to attempt to standardise post-discharge care in the UK. The bundle delivered in this cohort study incorporates all five items recommended by the British Thoracic Society COPD Discharge Bundle (https://www.brit-thoracic.org.uk/quality-improvement/clinical-resources/copd-spirometry/), namely: 1) Review of medication and providing inhaler technique education; 2) Provision of a self-management plan; 3) Assess and offer referral for smoking cessation; 4) Arrangement of post-hospitalisation follow-up; and 5) Assess suitability and refer for pulmonary rehabilitation. Figure E1 below provides an example of the standardised paperwork which requires completion when delivering the COPD discharge bundle.

![COPD Discharge Bundle Example](image)

Figure E1. Example of standardised paperwork which requires completion for the COPD discharge bundle.
Sample Size Calculation

The sample size calculation was based on previous observations that approximately 30% of those receiving a discharge bundle are referred for pulmonary rehabilitation. To demonstrate an increase in referral rate to 60% in those who received a discharge bundle from a pulmonary rehabilitation practitioner, with 80% power at the 5% significance level and assuming an exposure ratio of 1:9 (i.e. 10% of discharges would receive a bundle from a pulmonary rehabilitation practitioner) would require a minimum of 220 patients (MedCalc Software, Ostend, Belgium).

For the overall population at hospital discharge, we estimated the proportion taking up pulmonary rehabilitation to be 20%. To demonstrate an increase in the proportion of those at hospital discharge taking up pulmonary rehabilitation to 50%, with 80% power at the 5% significance level and assuming an exposure ratio of 1:9 (i.e. 10% of discharges would receive a bundle from a pulmonary rehabilitation practitioner), would require a minimum of 190 patients (MedCalc Software, Ostend, Belgium).

We planned to collect data for a minimum of one year to take into account seasonal variations, and continue to collect if the planned sample size had not been recruited within one year.
Diagram for study flow

411 were eligible episodes

120 were excluded
- Ineligible for PR
- Re-admission of a patient already included

291 patients were included

63 did not receive a COPD discharge bundle

0 were referred for PR at hospital discharge

25 received a bundle from a hospital practitioner involved in PR delivery

15 were referred for PR at hospital discharge

203 received a bundle from a hospital practitioner with no involvement in PR

25 were referred for PR at hospital discharge

6 commenced PR within 28 days of hospital discharge

8 commenced PR within 28 days of hospital discharge

2 completed the PR programme

3 completed the PR programme

Figure E2. Diagram of study flow
References