CONVALESCENT PLASMA TREATMENT OF SEVERE COVID-19: POTENTIAL BENEFIT BUT MANY UNANSWERED QUESTIONS

Virus-specific antibodies in convalescent plasma have demonstrated a therapeutic benefit in viral infections such as SARS and may offer similar potential in COVID-19 infection. Liu and colleagues (Nat Med 2020;26:1708) conducted a retrospective prospensity score matched control study to evaluate the effectiveness of convalescent plasma therapy in 39 patients with severe or life-threatening COVID-19 within 14 days of symptom onset. The study used a 1:2 and 1:4 matching analysis with attempts to account for major confounders. The cohorts were broadly well matched on important factors with the exception of therapeutic anti-coagulation. The 1:4 matched model showed significant survival benefit with convalescent plasma (HR, 0.34; 95% CI, 0.13 to 0.89; p=0.027). Convalescent plasma recipients who were not mechanically ventilated at the time of transfusion (n=34) were significantly less likely to die than their matched controls (HR, 0.23; 95% CI, 0.05 to 0.98; p=0.046). The study was unable to observe any impact on mechanically ventilated patients due to the small sample size (n=4). Subgroup analysis also suggested a benefit of convalescent plasma in those with less than a week of symptoms (p=0.035), and those receiving therapeutic anticoagulation (p=0.018). No correlation was observed between donor antibody neutralisation titres and convalescent plasma recipient outcomes. No serious adverse events were identified as directly related to convalescent plasma transfusion. While the study is supportive of convalescent plasma transfusion as an effective intervention for this group of patients with COVID-19, caution is needed due to the nature of the study design, which cannot account for unmeasured confounders and case selection bias further work with randomised data is needed.

RACIAL BIAS IN PULSE OXIMETRY MEASUREMENT: ALWAYS KNOW THE LIMITATIONS OF YOUR TEST

The use of pulse oximetry (SpO₂) to monitor patients and inform treatment decisions is almost ubiquitous in modern medicine. However, little is known about potential differences in accuracy between racial groups. Stojding et al’s (NEJM 2021;383:2477) report paired SpO₂ and arterial (SaO₂) samples study in adult inpatients receiving supplemental oxygen from a single site, adjusted for age, sex and cardiovascular impairment, and wider unadjusted multicentre dataset. A total of 10 786 paired measurements were obtained from 1333 White patients and 276 Black patients in the single-centre cohort and 37 308 paired measurements were obtained from 7342 White patients and 1050 Black patients in the multicentre cohort. In the single-centre cohort, in patients who had an SpO₂ of 92%–96%, an SaO₂ of <88% was found in 88/749 Black patients (11.7%; 95% CI 8.5% to 16%) and in 99/2778 White patients (3.6%; 95% CI 2.7% to 4.7%). Results were similar in the multi-centre cohort. These data demonstrate an approximate three times higher risk of occult hypoxia in black patients when compared with white patients. Given the importance of pulse oximetry for medical decision-making, these findings could have major implications for medical management and escalation of care, especially during the current COVID-19 pandemic.

INTERIM RESULTS OF CHADOX1 NCov-19 VACCINE (AZD1222): SAFE AND EFFECTIVE

The ChAdOx1 nCoV-19 (AZD1222) contains a replicant-deficient chimpanzee adenoviral vector (ChAdOx1), containing the SARS-CoV-2 structural surface glycoprotein antigen (spike protein: nCoV-19) gene. Data from 11 636 participants (5807 vaccine and 5829 placebo) across four trials were included in this interim primary efficacy analysis (Lancet 2020;297:99). All participants in the vaccine arm received two standard doses (SDs), except a subgroup of participants in the UK that received a low dose (LD) then an SD. Participants over 55 accounted for 12.2% of the total cohort with majority female (61%) and white (UK, 91%; Brazil, 67%). There were 30/5807 (0.5%) cases of COVID-19 in the vaccine arm and 101/5829 (1.7%) cases in the control arm with an overall efficacy of 70.4% (95.8% CI, 54.8% to 80.6%). Vaccine efficacy in participants who received SD/SD was 62.1% (95% CI, 41.0% to 75.7%), and in LD/SD was 90.0% (95% CI, 67.4% to 97.0%). Further work is required to understand reasons for increased efficacy in the LD/SD regimen. Age and time interval between vaccinations were potential confounding variables. All 10 participating hospitals stabilised with COVID-19 after day 21 were in the control arm. The overall safety profile of the vaccine was good with <1% (vaccine, 79/1201 and placebo, 89/11724) serious adverse events in both groups. For safety reasons, older participants were vaccinated after the 18–55 cohort and hence only 5 cases of COVID-19 had occurred in participants older than 55 at data lock; therefore, vaccine efficacy in this age group could not be assessed. Duration of protection from ChAdOx1 nCoV-19 is yet to be determined but these data suggest excellent early efficacy.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Commissioned; internally peer reviewed.

Data availability statement Data are available in a public, open access repository.

© Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ.

To cite Shiham FF. Thorax 2021;76:526.

Shiham FF. Thorax 2021;76:526.
doi:10.1136/thoraxjnl-2021-217243