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ABSTRACT
Exhaled breath analysis has the potential to provide 
valuable insight on the status of various metabolic 
pathways taking place in the lungs locally and other vital 
organs, via systemic circulation. For years, volatile organic 
compounds (VOCs) have been proposed as feasible 
alternative diagnostic and prognostic biomarkers for 
different respiratory pathologies.
We reviewed the currently published literature on the 
discovery of exhaled breath VOCs and their utilisation in 
various respiratory diseases
Key barriers in the development of clinical breath 
tests include the lack of unified consensus for 
breath collection and analysis and the complexity 
of understanding the relationship between the 
exhaled VOCs and the underlying metabolic 
pathways. We present a comprehensive overview, 
in light of published literature and our experience 
from coordinating a national breathomics centre, 
of the progress made to date and some of the key 
challenges in the field and ways to overcome them. 
We particularly focus on the relevance of breathomics 
to clinicians and the valuable insights it adds to 
diagnostics and disease monitoring.
Breathomics holds great promise and our findings 
merit further large-scale multicentre diagnostic studies 
using standardised protocols to help position this 
novel technology at the centre of respiratory disease 
diagnostics.

INTRODUCTION
Respiratory diseases remain among the leading 
causes of death worldwide.1 By 2030, WHO esti-
mates that respiratory illnesses will account for 
about one in five deaths worldwide.2

Early, rapid detection and treatment of lung 
diseases remain a priority, which would improve 
patient care and personalised therapy.3 For years, 
existing technologies like lung function tools 
and blood biomarkers have played an important 
role in diagnosing and monitoring lung diseases. 
However, there remains an unmet need for point-
of-care respiratory-specific biomarkers that can aid 
in advancing precision medicine in both acute and 
stable respiratory diseases.

The lungs are almost unique owing to their 
ability to provide biological samples, direct from 
the organ with every breath. The ability to capture 
and analyse this sample type is highly attractive, 
as it allows direct non-invasive measurement of 
ongoing metabolic processes.

Breathomics, a branch of metabolomics studying 
exhaled breath, is a steadily evolving field that 
focuses on understanding the nature of volatile 
organic compounds (VOCs) and their health-
related uses. VOCs can be leveraged as diagnostic 
biomarkers owing to their potential to mirror 
pathological processes taking place locally in the 
lungs and systematically, via the blood circulation.4 
Additionally, they offer a non-invasive platform 
that is repeatable and potentially personalised, via 
‘breathprint’ signatures.5 Despite years of clin-
ical trials, technical and statistical challenges have 
delayed further translation of this technology to a 
real-world clinical setting.

In this state-of-the-art review, we examine the 
current evidence, analytical challenges and future 
considerations of exhaled breath analysis in respi-
ratory diseases.

Data sources and search criteria
For the purpose of this narrative review, a system-
atic search was conducted using the following 
evidence databases: (1) PubMed, (2) Medline and 
(3) EMBASE. The keywords and mesh terms used 
to complete the search included: ‘asthma’, ‘volatile 
organic compound(s)’, ‘exhaled breath’, ‘VOC’, 
‘VOCs’, ‘origin of VOCs’, ‘electronic nose’, ‘eNose’, 
‘chronic obstructive pulmonary disease’, ‘respira-
tory infections’, ‘lung cancer’, ‘airflow limitation’, 
‘Emphysema’ and ‘chronic bronchitis’.

Published peer-reviewed, full-text articles 
concerning clinical studies using VOCs in a diag-
nostic or disease monitoring capacity were assessed 
for eligibility. The following study types were 
included: observational studies, cross-sectional, 
case–control and cohort, and randomised controlled 
trials. The references lists of included studies were 
scrutinised to identify further relevant studies.

The studies were assessed based on their meth-
odology and published results. Key findings from 
these studies are presented in the relevant sections.

Historical perspective of breath analysis
Utilisation of exhaled breath VOCs for disease 
diagnostics dates back to ancient Greek civilisations 
where breath was used to diagnose various illnesses. 
For example, the fruity smell of diabetic ketoaci-
dosis and the fishy smell of liver illnesses.6–8 These 
elementary smell detection tests can be considered 
as the foundation of breath analysis.

The 20th century witnessed remarkable achieve-
ments in the field of breath testing, notably in 
1971 Nobel Prize winner Linus Pauling presented 
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a gas chromatogram showing separation of volatile substances 
from human breath, subsequently describing 250 components 
in exhaled breath.9 It was not, however, until the mid-eighties 
when Gordon et al demonstrated the feasibility of analysing 
exhaled breath VOCs in early diagnosis of lung cancer.10 This 
early association of VOCs and human disease formed the foun-
dation for the current use of breathomics in early diagnosis and 
stratification of lung diseases.

In the following years, exhaled breath analysis gained 
increasing attention as a tool for diagnosing various illnesses. 
The specific pathways for these VOCs are not fully understood, 
nonetheless, profound progress has taken place with analytical 
technologies and detection capabilities.

Volatile organic compounds
Each exhaled breath contains thousands of VOCs; a heteroge-
neous group of carbon-based chemicals characterised by a high 
vapour pressure resulting from a low boiling point at room 
temperature.

Each breath cycle consists of different breath phases, and 
breath samples are often captured from the phase involved in 
gaseous exchange. This is also known as the ‘end expiratory 
phase’ or ‘alveolar breath’, excluding the dead space.11 12 This 
can be achieved using ‘gated sampling’, a process by which frac-
tions of breath are collected based on measured parameters.

VOCs can originate from the external environment (exog-
enous) or from internal metabolic processes (endogenous) 
(figure 1). The presence of abundant exogenous compounds in 
breath samples (ie, environmental contamination) represents a 
fundamental challenge in breath research. Exogenous VOCs are 
continuously introduced into the respiratory system and owing 
to the complex kinetics of gas exchange, these can result in the 
production of volatile by-products, via various interactions with 
airway microbiota and mucosal lining.13

Removal of exogenous VOCs may simplify analysis, but loses 
potentially useful signals and requires additional processing 
steps. For example, limonene, a widely used food additive 
and fragrance for cosmetic or cleaning products,14 is present 
in higher levels in patients with liver cirrhosis and those with 
hepatic encephalopathy symptoms.15

In essence, exogenous VOCs and environmental contami-
nation should be given special consideration when analysing 
exhaled breath VOCs for discovery studies; it continues to be 
an area of great uncertainty and larger multicentre studies vali-
dating environmental exposomes should be carried out.

Breath collection and storage
VOCs are found in trace levels (mainly in parts per trillion to 
parts per billion range) which poses considerable analytical chal-
lenge to operators.16 Current technologies allow for hundreds of 
VOCs to be detected in each exhaled breath sample.

Breath collection is a key step in this process and sub-optimal 
sampling can introduce contaminants, lose potential markers 
or alter the balance of breath patterns. As a result, considerable 
effort has been put into improving and standardising sampling 
and preconcentration steps.

Breath sampling can either be direct, usually with point-of-
care analysis, known as ‘online’ sampling; or indirect, with 
breath stored for lab-based analysis, known as ‘offline’ sampling. 
In both, careful attention needs to be paid to the choice of 
sampling process and analytic platform.

Collection bags made of Tedlar, polytetrafluoroethylene 
(PTFE) or foil have been widely used as receptacles for breath 
sample storage. Bags are attractive as they are a convenient, inex-
pensive and are disposable for potentially infectious samples,17 
however, potential drawbacks are (1) compound degradation 
within collection bags, particularly when samples remain mixed 
with water vapour and (2) compound interactions within the 

Figure 1  This figure highlights the complex kinetic of gaseous exchange. Endogenous VOCs can originate from the lungs or distant organs, 
via systemic circulation. Exogenous VOCs are continuously introduced into the respiratory system which can result in the production of volatile 
downstream products. Breath samples containing endogenous and exogenous VOCs are analysed to generate clinically meaningful data. GC-MS, gas 
chromatography mass spectrometry; VOCs, volatile organic compounds.
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bag product. Additionally, Steeghs et al18 tested the compati-
bility of Tedlar bags and highlighted two abundant compounds 
contaminating bag contents. A reproducible compound loss 
was also detected both during bag filling and at a later stage 
following storage. Important considerations and suggestions for 
bag handling have been published.17

Various direct breath collection devices have emerged over the 
last few years.19–21 One example is the Respiration Collector for 
In Vitro Analysis breath sampler (Owlstone Medical, Cambridge, 
UK), which is a handheld, portable device, designed to collect 
breath directly onto sorbent tubes that are then transferred 
for analysis.22 The portability of such devices allow for breath 
collection at the patient’s bedside.

Sorbent tubes are commonly used for trapping and trans-
porting VOCs from breath samplers to analytical devices, 
offering significant cost and logistical advantages.23 Sampling 
onto sorbent tubes is usually carried out using a calibrated pump 
where air is drawn through the tube at a constant rate and as the 
breath sample passes through the tube, compounds are collected 
on the absorbent inside.

A common concern with this method is that sorbents can 
retain moisture, given the high water vapour content in breath, 
which can negatively affect the quantitative capture of some 
analytes. In an attempt to overcome this problem, samples can 
be dry purged where a pure inert gas is passed through the 
sorbent tube to eliminate any additional trapped moisture while 
retaining analytes.24

VOCs are released from the tube for analysis using a process 
known as thermal desorption. Samples are heated to allow for 
sample extraction from the absorbent interior onto a pre-cooled 
trap, before further desorption into the analytical system. This 
offers numerous benefits including concentration enhancements, 
amplifying detection limits and eliminating unwanted analytical 
interferences.25

Other considerations when undergoing breath collection 
include the time of day. Wilkinson et al26 demonstrated a circa-
dian variability in a proportion of exhaled VOCs over a 24-hour 

period with differential patterns of VOC release in asthmatics 
compared with healthy breath.

Breath analysis
There are a number of technologies that can be used to analyse 
breath samples. Broadly these can be divided based on offline 
and online sampling techniques (figure 2).

Offline technologies
Offline technologies are considered the gold standard techniques 
for breath analysis and include:

Gas chromatography mass spectrometry (GC-MS) is the 
the most common chromatographic technique, allowing for 
compound separation and identification based on both reten-
tion time and mass spectra matching.27 Gas chromatography 
comprises two main phases (1) the mobile phase: the vaporised 
sample is carried in an inert gas (eg, helium) at a predetermined 
speed which is then passed through a chromatographic column 
and (2) the stationary phase: compounds are separated based 
on the strength of interaction between the molecules and the 
column; with the time taken for it to pass through the column 
known as retention time. Despite being highly sensitive and 
reproducible, complex presample processing, prolonged analysis 
time and expert knowledge requirement has hampered its use 
in a wider clinical setting. A number of studies have emerged 
over the years using GC-MS to examine specific VOCs for lung 
pathologies,28–30 however, the lack of standardisation and meth-
odological platforms limited further exploration of this tech-
nology in wider multicentre comparison studies.

Comprehensive two-dimensional GC-MS (GC ×GC MS) 
is a multidimensional gas chromatography technique where 
the addition of an extra column provides superior separation 
over conventional GC-MS.31 As the analytes elute from the 
primary column, they are modulated onto a secondary column. 
This shorter secondary column leads to further separation 
allowing peaks with similar volatility, which could not be sepa-
rated adequately with one-dimensional chromatography, to be 

Figure 2  Exhaled breath VOCs can be analysed using offline or online technologies. Offline technologies, currently considered gold standard, involve 
storing samples in a sorbent tube or collection bag prior to injecting them to an analytical instrument (eg, GC-MS). Online technologies involve direct 
introduction of breath samples to analytical instruments for analysis, negating the need for sample collection and storage. Online technologies require 
less analytical instrument time and technical skills and results can be obtained immediately, however, they lack the ability to identify compounds with 
high fidelity which limited its applications. GC-MS, gas chromatography mass spectrometry; VOCs, volatile organic compounds.
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separated by another mechanism. This is particularly helpful in 
complex matrices like breath samples.31–33 As the technique is 
more advanced, it has a higher initial capital cost compared with 
traditional GC-MS and requires more specialist skills to operate.

Online technologies
Online technologies involve direct introduction of breath 
samples into analytical instruments for analysis, negating the 
need for sample storage. As online technologies often require 
less analytical time results can be obtained immediately and, 
owing to their portability, they offer a potential for point of care 
testing. However, this means any chromatographic separation 
and analytical detector are often simplified, reducing the ability 
to identify compounds with high fidelity. This, and the lack of 
data processing parameters, limits its applications to proof-of-
concept benchmarking studies and validation studies.34

Common examples of these technologies include:

GC ion mobility spectrometry
First described by McDaniel in the 1950s, ion mobility spectrom-
etry (IMS) is an analytical technique that separates and identifies 
ionised molecules in the gas phase based on their mobility in a 
carrier buffer gas,35 it can detect VOCs down to ultratrace levels 
(ng/l to pg/l range) without the need for pre-concentration, visu-
alising VOCs in a 3D IMS chromatogram. Without identifying 
individual chemical components, IMS recognises peak patterns 
that can be used for disease recognition. Its simplicity and easy 
patient interface allowed its utilisation in few studies in the last 
decade.36–39

Proton-transfer-reaction mass spectrometry (PTR-MS): 
PTR-MS has the capability of real-time analysis: it is considered 
one of the fastest analytical techniques with a typical time reso-
lution of <100 ms. VOCs are ionised by transferring a proton 
from the reagent ion, hydronium, to any molecules with a suit-
able proton affinity, which are then separated in the mass spec-
trometer. Despite its speed the lack of pre-concentration can 
limit sensitivity and the absence of chromatographic separation 
limits its ability to definitively identify compounds compared 
with GC-MS.

Electronic nose technology
Loosely mimicking human olfaction, electronic noses (eNose) 
are made of multiple array sensors programmed to recog-
nise different odours and comparing them to preprogramed 
patterns.40 Array sensors convert chemical input (breath samples) 
into electrical signals.41 eNoses do not contribute to individual 
compound identification, instead disease separation occurs 
through recognition of different breath profiles, also known as 
‘breath prints’ or ‘breath signatures’ using pattern recognition 
algorithms.

Unlike GC-MS, analysis eNoses do not require highly skilled 
operators, and has a relatively quick operational time (results 
within minutes), with lower technical costs. Its readily imple-
mentable nature makes it more suited for point of care clinical 
testing compared with other offline technologies.7 However, 
there are some disadvantages compared with mass spectroscopy, 
mainly the inability to identify named compounds in complex 
mixtures, making it impossible to link back to metabolic 
processes and mechanistic pathways.42 Additionally, the breath 
signatures are highly influenced by environmental factors and 
water vapour, so considered to be less rigorous.7

Several diagnostic studies have been carried out using 
eNoses in airway disease43–46 and lung cancer47–49 with good 

discriminatory power. Furthermore, Plaza et al50 described the 
ability of breath signatures in stratifying different phenotypes of 
asthma based on their sputum granulocytic count.

As described, eNose technology has the potential to make a 
powerful screening tool for various pulmonary diseases. Further 
largescale pragmatic clinical trials are required to further vali-
date this. The limited sensor stability, inability to calibrate and 
the difficulty in mass generating identical sensors have hindered 
further translation of this technology to a real-world clinical 
setting.

Headspace analysis
Headspace refers to the volume of gas directly above and in 
contact with a biological sample. Headspace has been used as a 
VOC source for a number of solid and liquid samples. For head-
space analysis purposes, samples are usually kept within sealed 
glass vials that are either heated or air is driven over them to 
stimulate VOC release out of samples. Once stabilised, the gas 
within the vial is then collected or directly transferred to instru-
ments for analysis.

Although still in the early stages of development, headspace 
analysis has been used to investigate compounds from bacteria 
implicated in ventilator-associated pneumonia51 and the iden-
tification of more specific organisms such as Escherichia coli, 
Pseudomonas aeruginosa and Aspergillus fumigatus,52–54 with 
promising results.

In vitro breath analysis adds to the growing body of evidence 
supporting the use of headspace VOC analysis in clinical prac-
tice, however, it faces many challenges including sample degra-
dation requiring standardised protocols for sample storage and 
treatment.

VOCs in respiratory disease
Exhaled breath of healthy individuals contains a wide range of 
VOCs at varying concentrations. These compounds include, 
but are not limited to, hydrocarbons, ketones, aldehydes and 
alcohols.55 A breakdown of the various functional groups and 
their structure formulas are highlighted in (online supplemental 
table 1). The content and concentrations of these VOCs vary 
depending on the underlying metabolomic pathways during 
health and disease states as well as environmental interferences.

It was not until advanced analytical techniques were intro-
duced in the 1990s that a complete set of human breath profile 
had emerged for the first time.56 Hydrocarbons were one of the 
first discovered compounds in human breath, dating back to 
1963 Ram Chandra and Spencer reported unexpected ethylene 
levels in exhaled human breath that were not thought to be solely 
attributable to gut flora.57 This was later believed to be associ-
ated to disease state when small chain hydrocarbons, which were 
thought to be a direct result of lipid peroxidation, were identi-
fied in exhaled breath.58

Exhaled breath VOCs analysis has been utilised in a variety of 
respiratory conditions, including:

Airway diseases
Asthma and chronic obstructive pulmonary disease (COPD) 
are two of the most common respiratory diseases affecting 
millions of people.59 The utilisation of VOCs in airways 
disease is promising, although to date there are no defin-
itive diagnostic breath signatures for either disease to aid 
disease classification. Numerous studies have evaluated the 
use of exhaled VOCs in diagnosing and phenotyping airways 
diseases, with the most commonly identified compounds 
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belonging to carbonyl-containing groups (ie, aldehydes, esters 
and ketones) and hydrocarbons (ie, alkanes, alkenes and 
monoaromatics).60–62

In one of the largest exhaled breath studies in asthma, Schleich 
et al63 were able to successfully classify 521 asthmatic patients 
into three groups based on their sputum granulocytic cell count, 
potentially offering surrogate biomarkers for eosinophilic and 
neutrophilic asthma.

Exhaled breath VOCs have been shown to successfully sepa-
rate asthma and COPD,64 65 breath signatures using eNoses have 
been shown to do the same based on clinical and inflammatory 
characteristics rather than disease diagnosis.66

Basanta et al67 investigated the relationship between exhaled 
breath VOCs and existing indices of inflammation and described 
in great detail the ability of GC-ToF-MS in discriminating 
patients with COPD based on inflammatory cells into eosino-
philic and neutrophilic subgroups, this particularly relevant in 
precision medicine and assessment of treatment response .

Exhaled breath analysis shows a promise in enhancing our 
knowledge of the pathogenic pathways driving airway diseases. 
The use of VOCs as stratification biomarkers in this diverse 
patient population has the potential to transform the care we 
offer. Further progression towards a real-world clinical trans-
lation will highly depend on the implementation of large-scale, 
well-powered, multicentre clinical studies.

VOCs in respiratory infections
The treatment of microbial respiratory infections is an obvious 
target for breathomics, as early and accurate identification of 
causative organisms can be challenging, particularly in patients 
with severe infections.68 Micro-organisms produce a wide variety 
of volatile metabolites, which can be released in the stable state 
or when the cell is disrupted in cases of infection69–71; these vola-
tiles can serve as a biological marker of microbial presence and 
have the potential to enhance the diagnostic process, improving 
clinical outcomes.72

The presence of distinct VOC profiles in pneumonia has been 
demonstrated by multiple studies,73–75 however, none have estab-
lished sufficient granularity to accurately diagnose pneumonia 
based on a single breath test. A systematic review by van Oort 
et al76 outlined nitric oxide (NO), among others, as a potential 
diagnostic biomarker; though this is thought to be less specific as 
various other respiratory conditions drive altered NO bioactivity 
during disease state.77

Boots et al78 examined two hundred samples of bacterial head-
space (defined as the area of gas directly surrounding a sample) 
from four different microorganisms (E. coli, P. aeruginosa, Staph-
ylococcus aureus and Klebsiella pneumoniae) and demonstrated 
a highly significant difference in VOC occurrence of different 
bacterial cultures, Additionally, they demonstrated separation 
between methicillin-resistant and methicillin-sensitive isolates of 
S. aureus potentially translating to a valuable diagnostic tool in 
medical microbiology.

There is an urgent unmet need for a rapid and accurate test 
to diagnose tuberculosis, owing to the high diagnostic delay.79 80 
Breath analysis has the potential to diagnose TB with moderate 
accuracy81 through the detection of specific VOCs produced by 
Mycobacteria,82 83 however, implementing VOCs as standard 
diagnostic tools will require further developments.

Cystic fibrosis (CF) is a growing area of interest in respira-
tory medicine, several studies have examined the role of exhaled 
breath VOCs in CF patients; Kramer et al84 demonstrated a 
proof-of-concept approach to using exhaled VOCs for the rapid 

identification of infectious agents in CF patients with lower 
respiratory tract infections.

The 2-aminoacetophenone (2-AA) was assessed for its spec-
ificity to P. aeruginosa in 29 CF patients and its suitability as 
a potential breath biomarker using GC-MS.85 The 2-AA was 
detected in a significantly higher proportion of subjects colonised 
with P. aeruginosa (93.7%) than both the healthy controls (29%) 
and CF patients not colonised with P. aeruginosa (30.7%) indi-
cating that (2-AA) is potentially a promising breath biomarker 
for colonisation.

Breath analysis has the potential to be positioned in both the 
diagnostic and therapeutic work flows of respiratory infections, 
guiding early diagnosis and judicious antimicrobial use.

VOCs in lung cancer
Lung cancer has a poor prognosis, mostly due to the lack of 
symptoms and late presentation. While screening with CT has 
been introduced, the ability to diagnose through breath would 
likely lead to significant clinical impact, with considerably less 
radiation exposure to patients.86

Metabolic changes within cancer cells can lead to significant 
changes in volatile breath profile.87 Over the years, this has been 
explored as a potential avenue for early detection and diagnosis 
of lung cancer.88–91

One of the first studies to use VOCs in lung cancer was carried 
out by Gordon et al10, they reported a GC-MS profile of exhaled 
breath profile of 12 samples from lung cancer patients and 17 
control samples with almost complete differentiation between 
the two groups.

Bajtarevic et al89 expanded on this to include an additional 
analytical instrument, using both PTR-MS and solid phase 
microextraction with subsequent GCMS, with a larger sample 
size (220 lung cancer patients at different stages of illness and 
441 healthy volunteers), they reported that the three main 
compounds appearing in everybody’s exhaled breath (isoprene, 
acetone and methanol) were found at a slightly lower concentra-
tion in lung cancer patients compared with healthy volunteers 
using PTR-MS, additionally, the sensitivity of detection of lung 
cancer volatiles in breath based on the presence of four different 
compounds was only 52%, going up to 71% when including 15 
compounds. The compounds identified were mainly alcohols, 
aldehydes, ketones and hydrocarbons.

Dragonieri et al48 adopted a different approach by using 
eNose and was able to discriminate breath profiles of 30 subjects 
with non-small cell lung cancer from patients with COPD and 
healthy volunteers, with modest accuracy.

The aforementioned studies have formed the foundation for 
large scale clinical trials evaluating the use of exhaled breath 
VOCs in patients with a clinical suspicion of lung cancer.92 
Further results of large scale trials are eagerly anticipated.

VOCs in other respiratory conditions
Exhaled breath VOCs have been used in various other respira-
tory illnesses, nearly 90% of 25 patients with Pneumoconiosis 
were discriminated by their breath profile (receiver operator 
characteristic area under the curve (ROC-AUC) 0.88).93

Several studies examined the role of exhaled VOCs in intersti-
tial lung disease (ILD), Yamada et al39 described five characteristic 
VOCs in the exhaled breath of IPF patients, using multicap-
illary column IMS. Of the five VOCs, four were identified as 
p-cymene, acetoin, isoprene and ethylbenzene. Further work 
in ILD was carried out using IMS, which seems to be a prom-
ising technique in discriminating patients with ILD from healthy 
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controls.94 eNose sensors were used in patients with obstructive 
sleep apnoea, breath prints changed dramatically after a single-
night continuous positive airways pressume (CPAP) and changes 
conformed to two well-distinguished patterns indicating that 
exhaled breath prints can potentially qualify as a surrogate index 
of response to and compliance with CPAP.95

The most clinically relevant volatile compounds are listed 
in (online supplemental table 2) along with the corresponding 
analytical technologies and reported concentration changes.

Clinical implementation
The non-invasive nature, low patient burden and ability to 
directly sample from the target organ, makes the adoption of 
breathomics in real-world clinical practice an attractive prospect. 
However, clinical implementation has proved more challenging. 
The majority of reported breath studies so far have been small in 
size, single-centred and with no external validation. Nonetheless, 
several papers have assessed the feasibility of breath sampling in 
various clinical settings, including outpatient clinics,61 96 acute 
admission units,97 98 and intensive care units,74 99 with promising 
results.

External validation of breath biomarkers in independent 
populations is considered instrumental as it produces reliable 
predictions that can be reproduced in other clinical settings. 
The lack of external validation has created significant reporting 
challenges. From our review, there is little overlap between 
biomarkers reported by various groups which can be partially 
explained by the differences in methodology and reporting 
tools. The first step towards establishing a breathomics plat-
form in clinical settings would be to regulate practices, including 
agreed common standardised operating procedures for breath 
collection, storage and analysis.

Clinical implementation of breathomics is thought to be 
particularly relevant amidst the ongoing COVID-19 pandemic. 
SARS-CoV-2 infection has been reported to cause a multitude 
of symptoms that affect several organs and systematic metabo-
lism resulting in altered volatile metabolite distribution. Addi-
tionally, the rapid detection of COVID-19 specific VOC panel is 
thought to be particularly rewarding if tuned to assess the nega-
tive predictive value; this can be used to screen large popula-
tions (eg, airports, schools) as a first line test in ruling-out rather 
than ruling-in test, and to determine which individuals need 
further testing. This will enable rapid decision making as well as 
provide complementary information that will strengthen disease 
diagnostics.

Challenges and future considerations
Current analytical technologies have demonstrated an inno-
vative ability to separate and detect a wide range of exhaled 
breath VOCs, however, the implementation of these techniques 
in a real world clinical setting faces considerable chemical and 
analytical barriers. One of the major unresolved challenges is 
that of environmental contamination and their interference with 
exhaled breath VOCs, there is still no unified consensus on how 
to tackle this issue; as relevant as it is to subtract environmental 
VOCs,100 it is crucial to take all molecular breath interactions 
into consideration when generating a diagnostic breath matrix. 
Standardised protocols should be instated for breath collection, 
analysis and reporting to guide future studies and allow a trans-
parent analytical comparability across sites.

The availability of multiple analytical platforms with 
contrasting performance measures adds to the complexity of 
standardising biomarker discovery protocols. The choice of 

technology comes down to device availability and study budget, 
however, discovery studies are carried out using devices with the 
ability to separate and detect compounds with higher sensitivity 
and established robustness like (GC-MS). Although considered 
gold standard, GC-MS devices are considered highly complex 
for the non-experienced and are time consuming, making them 
less desirable in a real-world clinical setting. Sensor array-based 
technologies are much easier to use but are usually spared for 
when studies are aiming to distinguish between breath profile 
without the need for named compounds.

Analysis of breath matrices is highly complex, the combina-
tion of large variables and a relatively small sample size has led to 
various analytical challenges, the the most common being that of 
‘overfitting’. With overfitting, usually owing to a limited sample 
size, the whole dataset is used to train and validate discovery 
prediction models, as opposed to having separate discovery and 
replication datasets, this results in a falsely optimistic models 
that can’t be generalised to the entire population. Ideally, this 
is overcome by training prediction models in a distinct dataset 
that is separate to and independent from the validation dataset, 
currently considered the gold standard method.101 102

Exhaled breath biomarkers are envisaged to have a crucial role 
as point-of-care tests in emergency departments and primary care 
clinics, however, to our knowledge no major studies have been 
completed in these settings. To date, biomarker discovery studies 
have mostly been small in size and confined to single centres. 
With few exceptions,103–105 the majority of the published breath 
discovery studies have been carried out in the stable disease state 
or at an outpatient clinic level. Further large-scale trials targeting 
acute disease states are required to properly evaluate the reli-
ability of these breath tests and to formally assess the replica-
bility in a real-world clinical setting.

Exhaled VOCs can provide valuable insight into the metabolic 
processes in the human body beyond the lungs, this can further 
expand our understanding of the common respiratory metabolic 
traits, translating into improved patient-centred diagnostics and 
therapeutic measures. Only when the aforementioned chal-
lenges are addressed, can the value of breath technology be fully 
appreciated.

Conclusion
Exhaled breath analysis possesses an inherit appeal that has been 
explored by scientists and clinicians for many decades. The lack 
of consistency in trial outcomes among other challenges have 
hindered faster translation of this technology into a real-world 
clinical setting. Considerable effort has been invested over the 
last few years to address these issues but exhaled breath analysis 
is still far from clinical implementation. In this state-of-the-art 
review, we presented a comprehensive critique of the published 
literature and highlighted some of the key challenges and ways 
to overcome them.

Looking at the current state of the field compared with where 
it was 10 years ago predicts an encouraging future for exhaled 
breath analysis that can potentially revolutionise healthcare and 
point-of-care diagnostics.

Twitter Neil J Greening @Greening_COPD
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