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SAMPLE PROCESSING AND ANALYSIS 

All samples were maintained at -80oC until processed. Quality control recovery standards were 

added prior to extraction for QC purposes. Samples were prepared using the MicroLab STAR® 

system (Hamilton Company). Proteins were precipitated with methanol by shaking for 2 minutes 

followed by centrifugation. The resulting extract was divided into five fractions: two for analysis by 

two separate reverse phase (RP)/UPLC-MS/MS methods with positive ion mode electrospray 

ionization (ESI), one for analysis by RP/UPLC-MS/MS with negative ion mode ESI, one for 

analysis by HILIC/UPLC-MS/MS with negative ion mode ESI, and one backup. The organic 

solvent was removed using a TurboVap® (Zymark). Sample extracts were stored overnight under 

nitrogen before preparation for analysis. Controls analysed with the experimental samples 

comprised a pooled matrix sample generated by taking a small volume of each experimental 

sample as a technical replicate throughout the data set, extracted water samples as process 

blanks and various QC standards selected not to interfere with the endogenous compounds were 

spiked into every analysed sample, allowed instrument performance monitoring and aided 

chromatographic alignment. Instrument variability was determined by calculating the median 

relative standard deviation (RSD) for the standards that were added to each sample prior to 

injection into the mass spectrometers. Overall process variability was determined by calculating 

the median RSD for all endogenous metabolites present in all pooled matrix samples. 

Experimental samples were randomized across the platform run with QC samples spaced evenly 

among the injections. 

 

ULTRAHIGH PERFORMANCE LIQUID CHROMATOGRAPHY-TANDEM MASS 

SPECTROSCOPY (UPLC-MS/MS) 

All methods utilized a Waters ACQUITY ultra-performance liquid chromatography (UPLC) and a 

Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer interfaced with a 

heated electrospray ionization (HESI-II) source and Orbitrap mass analyser operated at 35,000 

mass resolution. Sample extracts were dried and reconstituted in solvents compatible with each 

of the four methods. Reconstitution solvents contained a series of standards at fixed 

concentrations to ensure injection and chromatographic consistency. 

1. Using acidic positive ion conditions, chromatographically optimized for more hydrophilic 

compounds. Extracts were gradient eluted from a C18 column (Waters UPLC BEH C18-

2.1x100 mm, 1.7 µm) using water and methanol, containing 0.05% perfluoropentanoic acid 

(PFPA) and 0.1% formic acid (FA). 

2. Using acidic positive ion conditions, optimised for more hydrophobic compounds at a higher 

organic content. 
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3. Using basic negative ion optimised conditions on a separate C18 column. The basic 

extracts were gradient eluted using methanol and water, with 6.5mM Ammonium 

Bicarbonate at pH 8. 

4. Via negative ionization following elution from a HILIC column (Waters UPLC BEH Amide 

2.1x150 mm, 1.7 µm) using a water/acetonitrile with 10mM Ammonium Formate, pH 10.8 

gradient. The MS analysis alternated between MS and data-dependent MSn scans using 

dynamic exclusion. The scan range varied slighted between methods but covered 70-1000 

m/z. 

 

DATA EXTRACTION AND COMPOUND IDENTIFICATION 

Raw data were extracted, peak-identified and QC processed at Metabolon© as described 

previously (1). The platform and compound identification algorithm uses biochemical 

identifications based on three criteria: 1) the retention index within a narrow RI window of the 

proposed identification, 2) mass match to the library +/- 10 ppm, and MS/MS forward and reverse 

scores between experimental data and standards. The MS/MS scores are based on a 

comparison of ions present in the experimental spectrum to those present in the library spectrum.  

The combined use of all three data points is used to distinguish and differentiate compounds. 

Over 3300 purified standards are registered in LIMS for analysis for determination of their 

identity. 

 

CONTROL GROUP 

To increase study power, 21 control samples from the current study were merged with female 

controls from two companion metabolites studies available from the NIHR BioResource Rare 

Diseases, University of Cambridge, resulting in 43 controls subjects. All were healthy women 

over the age of 18 with no prior history of lung disease (supplementary table 1). 

 

LAM GROUP 

The LAM subjects comprised 79 women recruited from the National Centre for LAM in 

Nottingham UK between 2011 and 2018. All subjects had LAM defined by current ATS/JRS 

criteria (2). Subjects had a clinical assessment, comprising CT of the chest, abdomen and pelvis, 

screening for TSC, full lung function. At follow up visits, lung function FEV1 and DLCO were 

measured. The study was approved by the East Midlands Research Ethics Committee 

(13/EM/0264) and all participants gave written informed consent. 

Prospective change in FEV1 was calculated by the regression slope of all FEV1 values (ΔFEV1) 

and expressed as change in ml/year. Only subjects with greater than one year of observations 

were included for calculation of ΔFEV1. 
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Serum VEGF-D was determined using Quantikine ELISA DVED00, (R&D Systems, Abingdon, 

UK). 

For exploratory analyses, subjects were categorised into those with mild and more severe 

disease based upon lung function and disease activity defined by ΔFEV1. Subjects were also 

segregated by menopausal status and treatment with rapamycin. 

 

DATA PRE-PROCESSING 

Normalisation and imputation of case and control samples serum metabolites were performed 

following the workflow presented in (1) and (3). Relevant normalisation (N) steps can be 

summarised as follows: (N.1) Untargeted metabolites and metabolites belonging to ‘Xenobiotics’ 

biochemical class were removed from the analysis, reducing the number of targeted metabolites 

to 820; (N.2) After checking the proportion of missing values across samples and metabolites, no 

metabolites were removed. (N.3) Each metabolite raw value was rescaled to have median 1 to 

adjust for variation due to instrument run-day tuning differences; (N.4) A log transformation with 

base 10 was applied to all the metabolites; (N.4) After transformation, data points lying more than 

4 standard deviations from the mean of each metabolite concentration were excluded. For the 

imputation (I) of missing values, we employed the KNN-TN method of (4) which consists of the 

following steps: (I.1) Estimation of the detection level (DL) of the machine to be the minimum 

observed value for the whole dataset; (I.2) Maximum Likelihood Estimation (MLE) of μm and σm, 

assuming that each metabolite m (m = 1,…,820) follows a left-truncated (on the DL) Gaussian 

distribution with mean μm and standard deviation σm; (I.3) Standardisation of each metabolite 

using the MLEs of μm and σm; (I.4) For each metabolite m with a missing value in sample i, 

detection of its K = 10 closest metabolites (which have an observed value for their ith sample) 

using the k-nearest neighbours algorithm; (I.5) Imputation of the missing value with a weighted 

average of the K values found in (I.4). The weights are functions of the Pearson correlations 

between the metabolite with missing values and its K closest metabolites; (I.6) Transformation of 

each metabolite back to the original scale as it was before step (I.3). 

 

DIFFERENTIAL ANALYSIS 

Differential analysis of 820 targeted serum metabolites was performed by using Limma (5) after 

correcting for BMI, ethnicity and run day (recording which samples were run on which days 

relative to each other) using a linear mixed model (6) with study and run day as crossed random 

effects. We also corrected for age when the hypothesis to test did require the assessment of its 

effect on the metabolites’ levels, and ‘study’ covariate as a third crossed random effect when we 

tested differences between LAM women not treated with rapamycin and healthy controls (since 

we added two extra control groups from the companion metabolites studies). Significant 

differential metabolites were declared at 10% FDR (7). 
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DIFFERENTIAL NETWORK ANALYSIS 

Based on the WGCNA package (8), Differential Network Analysis (9) allows the detection of 

differential networks (modules) between conditions. Relevant steps of this method include: (S.1) 

Build correlation matrix C within each condition. We used robust Spearman's rank correlation 

coefficient to calculate the correlation between any pair of metabolites in each condition. (S.2) 

Compute matrix of adjacent (powered correlation) differences. The soft-threshold power 

parameter β is chosen such that it is the lowest power for which the scale-free topology R2 fit 

between the degree of connectivity k and the proportion of metabolites that have connectivity k 

exceeds 0.85. In the real data analysis, this automatic procedure leads to estimated value of β 

ranging between 5 and 7. (S.3) Derive the Topological Overlap Measure (TOM distance) based 

on the dissimilarity matrix T in order to identify metabolites that share the same metabolites’ 

neighbours in the graph obtained from the matrix of adjacency differences (S.2); (S.4) 

Hierarchical clustering of dissimilarity matrix T based on TOM distance allows partitioning the 

metabolites into modules that share similar metabolites’ neighbours. Thresholding of hierarchical 

clustering is obtained by using the Dynamic Tree Cut R package (10). (S.5) The permutation-

based procedure is employed to assess the statistical significance of the modules detected in 

(S.4), with the number of permutations = 1,000. The permutation consists in shuffling 

observations between conditions and, for a given partition obtained in (S.4), the empirical p-value 

is obtained by calculating how many time the observed average powered correlation difference in 

a module is greater than the one obtained by shuffling the observations. Finally, (S.5) for each 

identified module, principal component analysis is performed and the first eigenvalue (‘eigen-

metabolites’) is correlated (Spearman correlation) with selected clinical traits. 

 

BIOINFORMATIC ANALYSIS 

Metabolomic pathway analysis was performed by using MetaboAnalyst 4.0 (11) with both 

significant differential metabolites and metabolites modules detected in the differential network 

analysis mapped in KEGG pathways. Given the lack of pathways annotation for a large fraction of 

metabolites, significant metabolomic pathways were declared at a conservative 10% Holm–

Bonferroni correction. Finally, topology pathway analysis was performed by selecting the relative-

betweenness centrality measure (ranging between 0 and 1) which quantifies the importance of a 

subgroup of metabolites in a given metabolomic pathway. 
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