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1. DATASETS ANALYSED FOR SERUM CC-16 GENOME-WIDE ASSOCIATION STUDY 

Description of study populations 

Lung Health Study 

The details of the LHS have been previously published.[1-3] The original LHS (“LHS-I”) was a 

longitudinal study examining the effects of a smoking cessation intervention (including counselling 

and nicotine replacement therapy) and regular inhaled bronchodilator (ipratropium bromide) on the 

rate of change in lung function (post-bronchodilator FEV1) in smokers aged 35-60 years with mild-

moderate COPD. COPD was defined by post-bronchodilator FEV1 55-90 percent predicted and 

FEV1/FVC ratio <0.7. A total of 5,887 participants were enrolled in LHS-I.[1] Interviews and 

spirometry were performed annually for 5 years. An extension of the original LHS, named LHS-III, 

involved an additional study visit 11 years after enrolment.[2]  

In LHS, there was an increase in FEV1 between screening and Year 1, which has been attributed to 

the effects of smoking cessation.[1] For the remainder of the observation period, there was a general 

decline in FEV1 over time. Therefore, for the purposes of our analysis, data from Year 1 to 11 were 

used in the analysis of change in FEV1 over time. 

Smoking status was assessed at each visit by self-report, and verified by exhaled carbon monoxide 

(eCO) and salivary cotinine (sCot) analysis. Data on smoking status was only available to us from 

LHS-I; we therefore assigned smoking status based on the baseline to year 5 data. We labelled 

participants as “continuous smokers” (eCO/sCot-verified smoking at all study visits), “sustained 

quitters” (eCO/sCot-verified non-smoking, plus self-reported number of cigarettes = 0, at every study 

visit) or “intermittent quitters” (eCO/sCot-verified non-smoking at some but not all study visits, or self-

reported smoking despite negative eCO/sCot at some but not all visits). We then used these smoking 

status labels as covariates in the GWAS and pQTL versus lung function decline models. 

At Year 5, the LHS investigators collected blood samples on 89% of the participants. A description of 

CC-16 measurement is given below. Genotyping in the LHS was undertaken using the Illumina 

Human660W-Quad v.1_A BeadChip (Illumina, San Diego, CA, USA), as previously described.[4] 

Study protocols in the LHS were approved by the institutional review boards at each trial center, and 

written informed consent was obtained from each participant 
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Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE): 

The details of the ECLIPSE cohort have been previously published.[5] ECLIPSE is a longitudinal 

study of current or former smokers with ≥10 pack year exposure aged 40-75 years, followed over 3 

years. For the purposes of our analysis, we analysed only Caucasian COPD cases defined by post-

bronchodilator FEV1 <80 percent predicted and FEV1/FVC ratio ≤0.7. Interviews and spirometry were 

performed at baseline, 3 months, 6 months and every 6 months after. An increase in mean FEV1 was 

observed between enrolment and Visit 1 (3 months). Therefore, we used only data from Visit 1 to Visit 

7 (3 years) to determine change in FEV1 over time. 

Smoking status was assessed at each study visit by interview, and verified by eCO. However, only 

smoking status from the baseline visit was available to us. We labelled participants as “smoker” 

(positive self-reported smoking or positive eCO) or “non-smoker” (negative self-reported smoking 

verified by negative eCO, or self-reported status missing but negative eCO). Subjects without an eCO 

status were considered missing data. 

Blood was collected at baseline for biomarker analysis and genotyping. A description of CC-16 

measurement is given below. Genotyping in the ECLIPSE cohort was undertaken using the 

HumanHap 550 V3 (Illumina) and quality control was performed using BeadStudio, as previously 

described.[6, 7] The present analysis is based on the use ECLIPSE study data downloaded from the 

dbGaP web portal, under study accession #phs001252.v1.p1 (available: 

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001252.v1.p1). 

Human research ethics approval was granted by the institutional review boards at each of the 

participating centers. 

 

Serum CC-16 measurement in the studies 

Measurement of serum CC-16 levels in the LHS and ECLIPSE cohorts has been described 

previously.[8, 9] Briefly, blood samples were centrifuged and separated, and the serum frozen and 

stored until the time of analysis. CC-16 concentrations in thawed serum samples were measured 

using a commercially-available, sandwich enzyme linked immunosorbent assay (ELISA) (BioVendor, 

Heidelberg, Germany). Concentrations were determined by reference to a standard curve of known 

CC-16 concentrations. 
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In the LHS, subjects with serum CC-16 concentration below the lower limit of quantitation (LLQ) of 

0.65 ng/mL were assigned a value equal to half the LLQ i.e 0.325 ng/mL.[9] For the present analysis, 

all subjects with CC-16 level equal to 0.325 ng/mL (n=240) were excluded due to their effect on the 

distribution of CC-16 concentrations. In ECLIPSE, subjects with serum CC-16 concentration below 

the LLQ were excluded; according to the study investigators, this equated to less than 1% of the 

cohort.[8] We further excluded outlier subjects from each cohort with serum CC-16 concentration >40 

ng/mL (LHS, n=1, ECLIPSE, n=1). In order to better approximate a normal distribution, we 

transformed serum CC-16 concentrations by their natural logarithm prior their use in our analysis. 

 

Effect of serum CC-16 level on COPD progression 

To determine the relationship between CC-16 and COPD progression, we used a linear mixed-effects 

regression model. For individual 𝑖 at time 𝑗: 

 

𝐹𝐸𝑉1'( =	 (𝛽- +	𝑏-') + (𝛽1 + 𝑏1')𝑡𝑖𝑚𝑒'( +	𝛽5𝑙𝑛𝐶𝐶16' +	𝛽:𝑙𝑛𝐶𝐶16' × 𝑡𝑖𝑚𝑒'( +	𝛽<𝐴𝑔𝑒' +

	𝛽?𝐴𝑔𝑒' × 𝑡𝑖𝑚𝑒'( +	𝛽@𝑆𝑒𝑥' +	𝛽C𝑆𝑒𝑥' × 𝑡𝑖𝑚𝑒'( +	𝛽D𝐵𝑀𝐼' +	𝛽H𝐵𝑀𝐼' × 𝑡𝑖𝑚𝑒'( +	𝛽H𝑆𝑚𝑜𝑘𝑖𝑛𝑔' +

	𝛽1-𝑆𝑚𝑜𝑘𝑖𝑛𝑔' × 𝑡𝑖𝑚𝑒'( +	𝛽11𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒	𝐹𝐸𝑉1' +	𝛽15𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒	𝐹𝐸𝑉1' × 𝑡𝑖𝑚𝑒'( + 𝑒'(  

 

where β represents the fixed effects, b represents the random effects, and 𝑒'( represents the random 

errors. 𝛽: is therefore the estimated effect of lnCC-16 levels on FEV1 change over time. Each 

covariate’s interaction with time was included in the model to adjust for its effect on FEV1 over time. 

We also quantified FEV1 change as the slope estimate of FEV1~time. This model is less robust for 

longitudinal series with few time points (e.g. ECLIPSE) and was therefore not used for any analysis, 

only for demonstration purposes (Supplementary Results Figure S1). 

 

2. DATASET ANALYSED FOR ASSOCIATION WITH COPD: ICGC/UK BIOBANK META-

ANALYSIS 

A total of 35,735 COPD cases and 222,076 non-COPD controls within the International COPD 

Genetics Consortium (ICGC) and UK Biobank cohorts were included in a recent genome-wide 
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association meta-analysis for the presence of COPD.[10] For our study, we used the resulting 

summary statistics of this meta-analysis. 

Description of cohorts included in the meta-analysis 

The ICGC is an international collaboration of COPD cohort, case-control and general population 

studies with spirometry and genotype data available; the full description of the individual studies was 

previously described[11]. Case-control association analyses (based on prebronchodilator spirometry 

measurements, with COPD cases defined based on Global Initiative for Obstructive Lung Disease 

(GOLD) criteria [12]) were performed by each member of ICGC, and the results made available to the 

consortium; cohort-specific methods have been previously described.[11] Genotype imputation of the 

ICGC cohorts was performed using the 1000 Genomes reference panel.[13] Human research 

approval for was obtained for each cohort in the ICGC, as previously described.[11]  

The UK Biobank cohort is part of the UK Biobank project,[14] which involved deep phenotyping and 

genotyping of a total of 502,682 individuals. The majority of individuals within this cohort are white 

Europeans. COPD cases within the UK Biobank cohort were also defined according to GOLD 

criteria[12] based on prebronchodilator spirometry. Genotyping of the UK Biobank cohort was 

performed using the Affymetrix Axiom UK BiLEVE and UK Biobank array, and genotypes were 

imputed to the Haplotype Reference Consortium version 1.1 panel.[15] Human research ethics 

approval for the UK Biobank project was granted by the North West Multi-centre Research Ethics 

Committee (MREC). Oversight for the ethical conduct of the UK Biobank project is performed by the 

UK Biobank Ethics Advisory Committee, for which the terms of reference can be found at 

https://www.ukbiobank.ac.uk/ethics/. 

Meta-analysis 

The authors performed logistic regression for COPD case/control status on the UK Biobank data; this 

analysis was adjusted for sex, age, genotyping array, smoking exposure (pack-years), ever-smoking 

status, and genetic principal components.[10] The authors then combined the association study 

results from the UK Biobank and each of the 22 ICGC studies by fixed-effects meta-analysis. 

Statistically significant results were defined at the genome-wide significant threshold of p<5x10-8.  

 

3. GENOTYPE IMPUTATION AND QUALITY CONTROL 
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Genotypes in the LHS and ECLIPSE were imputed to the Haplotype Reference Consortium panel 

version 1.1 using the Michigan Imputation Server.[16] After imputation, we removed 218,380 SNPs 

with duplicated position information. For our GWASs, we only kept SNPs with minor allele frequency 

(MAF) > 0.01 and imputation quality (r2) ≥ 0.7 (7,426,986 SNPs in LHS, and 7,471,599 SNPs in 

ECLIPSE).  

 

4. GENOME WIDE ASSOCIATION STUDIES FOR SERUM CC-16 LEVEL 

In both LHS and ECLIPSE, we determined the effects of each SNP on serum CC-16 level using an 

additive genetic model. For individual 𝑖: 

𝑙𝑛𝐶𝐶16'	 =	𝛽- + 𝛽1𝑆𝑁𝑃' +	𝛽5𝐴𝑔𝑒' +	𝛽:𝑆𝑒𝑥' +	𝛽<𝐵𝑀𝐼' +	𝛽?𝑆𝑚𝑜𝑘𝑖𝑛𝑔' + 𝛽@𝑃𝐶1' + 𝛽C𝑃𝐶2' + 𝛽D𝑃𝐶3'
+ 𝛽H𝑃𝐶4' + 𝛽1-𝑃𝐶5' +	𝑒' 

 

where β represents the effects and 𝑒' represents the random errors.	𝛽1 is therefore the estimated 

effect of an allele change on lnCC16 concentration. PC1-5 represent the first 5 genetic principal 

components. 

We then combined the results from the two cohorts in a fixed-effects meta-analysis with each SNP-

serum CC-16 association weighted by 1/(standard error of the CC-16 estimate)2 (i.e. inverse variance 

weighted (IVW)). For the meta-analysis, we only included the 7,312,348 overlapping SNPs in both 

LHS and ECLIPSE.  

In order to identify independently-associated SNPs, we performed conditional association analysis[17] 

within each 2 Mb gene region using the Genome-wide Complex Trait Analysis (GCTA) platform 

version 1.92.0beta3[18] with the larger cohort (LHS) as the linkage disequilibrium (LD) reference. The 

relevant conditional and joint P values are shown in Supplementary Results, Table S2. From this, we 

retained only those SNPs with independent, genome-wide significant (p<5x10-8) association with CC-

16 level. 

 

5. GENETIC ASSOCIATIONS WITH COPD OUTCOMES 

COPD progression (FEV1 change over time) 

To determine the effects of each SNP on COPD progression, we used a mixed effects model. For 

individual 𝑖 at time 𝑗: 
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𝐹𝐸𝑉1'( =	 (𝛽- +	𝑏-') + (𝛽1 + 𝑏1')𝑡𝑖𝑚𝑒'( +	𝛽5𝑆𝑁𝑃' +	𝛽:𝑆𝑁𝑃' × 𝑡𝑖𝑚𝑒'( +	𝛽<𝐴𝑔𝑒' +	𝛽?𝐴𝑔𝑒' × 𝑡𝑖𝑚𝑒'(

+	𝛽@𝑆𝑒𝑥' +	𝛽C𝑆𝑒𝑥' × 𝑡𝑖𝑚𝑒'( +	𝛽D𝐵𝑀𝐼' +	𝛽H𝐵𝑀𝐼' × 𝑡𝑖𝑚𝑒'( +	𝛽H𝑆𝑚𝑜𝑘𝑖𝑛𝑔'

+	𝛽1-𝑆𝑚𝑜𝑘𝑖𝑛𝑔' × 𝑡𝑖𝑚𝑒'( +	𝛽11𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒	𝐹𝐸𝑉1' +	𝛽15𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒	𝐹𝐸𝑉1' × 𝑡𝑖𝑚𝑒'(

+ 𝛽1:𝑃𝐶1' + 𝛽1<𝑃𝐶2' + 𝛽1?𝑃𝐶3' + 𝛽1@𝑃𝐶4' + 𝛽1C𝑃𝐶5' + 𝑒'( 

 

where β represents the fixed effects, b represents the random effects, and 𝑒'( represents the random 

errors. 𝛽: is therfore the estimated effect of an allele change on FEV1 over time. Each covariate’s 

interaction with time was included in the model to adjust for its effects on FEV1 over time. PC1-5 

represent the first 5 genetic principal components. 

“COPD risk” 

To quantify the effects of the CC-16 pQTLS on COPD risk, we used the summary statistics from the 

ICGC meta-analysis for COPD case status[10] as described in Section 2 above. 

 

6. MENDELIAN RANDOMISATION ANALYSIS 

To estimate the causal effect of CC-16 concentration on COPD outcomes (Analysis D in Figure 1), we 

related the CC-16 pQTL per-allele effects on serum CC-16 levels to their effects on COPD outcomes 

(“COPD risk” in the ICGC dataset, and “COPD progression” in LHS and ECLIPSE) in a multi-variable 

MR analysis using the MendelianRandomization v0.2.2 package in R.[19, 20] The 7 serum CC-16 

pQTLs identified from the GWAS meta-analysis were used as instrumental variables (IVs). We used 

an inverse variance weight (IVW) MR model i.e. the estimate was weighted by 1/(standard error of the 

COPD outcome effects)2 as described by Burgess et al.[21] We adjusted for LD between SNPs on the 

same chromosome by calculating LD using PLINK v1.9[22, 23] (503 European-descent samples from 

the 1000 Genomes Project Phase 3)[13] and importing the correlations using the mr_input function in 

the MendelianRandomisation package. The model intercept was constrained to zero. We set nominal 

significance at p<0.05. 

 

7. TESTING MR ASSUMPTIONS 

MR analysis is only valid if the IVs meet a number of fundamental assumptions.[24] We employed a 

systematic approach to test for violations of these assumptions, as outlined by Burgess et al.[25] 
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Testing for genetic variant associations with confounders 

A condition for a valid genetic IV is that it is not associated with a variable that confounds the risk 

factor-outcome association. To identify potential associations with confounders, we performed a 

search of the NHGRI-EBI Catalog of Human Genome-Wide Association Studies 

(https://www.ebi.ac.uk/gwas/), a publicly-available database of existing GWAS comprised of over 

4,500 publications and 180,000 genetic associations. This catalogue reports SNP-trait associations 

with p<1x10-5. We searched the database for each of the serum CC-16 pQTLs used in our analysis, 

with a plan to further investigating any genome-wide significant (p<5x10-8) SNP-trait associations. 

Testing for weak instruments: 

IVs with weak association with the risk factor (i.e. explaining little of the variance) may bias the 

average causal estimate because influence of confounders of the risk factor-outcome association is 

greater. We therefore examined the relative strength of each IV using the partial F statistic.[26] With 

reference to the GWAS model described above, we compared two models – one with and one without 

the SNP – by ANOVA. The F stastic in essence quantifies how much additional variance can be 

explained by the addition of the SNP to the model. SNPs that are weakly associated with CC-16 will 

explain only a small additional proportion of the variance compared to the rest of the model, as 

indicated by a low F statistic. We took the the “rule-of-thumb” of F<10 as a sign of a weak 

instrument[26]. 

Testing for heterogeneity: 

The presence of significant heterogeneity suggests that the variability in the IV estimates is greater 

than would be expected by chance alone, and thus may indicate bias due to one or more invalid 

IVs.[27] We used Cochran’s Q test (Heter.Stat output in the MendelianRandomization package), with 

nominal significance p<0.05 indicating heterogeneity. 

Testing for reliance on individual IVs: 

Multi-variable MR has superior statistical power to single-instrument MR. However, it is possible that 

the average causal effect is driven largely by the SNPs most strongly associated with the outcomes. 

To test the reliance of the multi-variable MR analysis on individual SNPs, we performed a leave-one-

out sensitivity analysis by excluding each variant one at a time and re-calculating the IVW MR 

estimate. If the MR estimate is no longer significant, it suggests that the analysis is heavily reliant on 
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that SNP. To summarise the sensitivity analyses, we plotted each of the MR estimates and 95% 

confidence intervals. 

Robust MR methods: 

IVW MR analysis has superior power to other methods, but it is particularly susceptible to violations of 

the MR assumptions. We therefore performed a number of alternative analysis methods that are less 

susceptible, particularly to the effects of invalid IVs. First, we performed the weighted median test 

using the mr_median function in the MendelianRandomization package. This is essentially a measure 

of central tendancy among the individual IV estimates that is particularly robust to outlier estimates 

and a small number of invalid IVs (up to 50 percent of the weight). We set statistical significance for 

this test at p<0.05. Next, we performed MR-Egger analysis[28] (mr_egger function in the 

MendelianRandomization package) which is similar to the IVW model but with an unconstrained 

intercept term. This model therefore allows directional pleiotropy, the presence of which is suggested 

by a significant (i.e. non-zero) intercept term (nominal significance set at p<0.05). Finally, we 

performed the Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) test in 

R.[29, 30] This test has three components: 1) a “global” test for directional pleiotropy, which compares 

the observed distance from the MR regression line (residual sum of squares) to the predicted distance 

from the regression line under the null-hypothesis of no directional pleiotropy; 2) the identification and 

removal of outliers that contribute to directional pleiotropy; and 3) a test for significant differences in 

the MR causal estimates before and after removal of outliers. Under the MR-PRESSO framework, 

components 2) and 3) only proceed if the global test for directional pleiotropy (1) is significant at a 

nominal p<0.05.  

 

8. DATASET ANALYSED FOR LUNG TISSUE GENE EXPRESSION: THE LUNG eQTL STUDY 

Description of cohorts 

The Lung eQTL Study[31] was a multi-national observational study examining non-tumor lung tissue 

samples collected from 1,111 people and 3 different sites (University of British Columbia (UBC), Laval 

University, and University of Groningen). The majority of samples were collected from study 

participants undergoing resection of presumed lung cancers. At the UBC site, n=39 samples were 

obtained at autopsy, n=22 from the diseased lungs of lung transplant recipients, and n=7 from donor 

lungs unsuitable for transplantation. For the majority of participants, lung function tests were 
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performed immediately before surgery. 84% percent of the participants across all sites were current or 

ex-smokers. 

Genotyping was performed on either blood (Laval site) or lung (UBC, Groningen sites) samples using 

the Illumina Human 1M-Duo BeadChip array, as previously described.[31] 

Ethics approval for the Lung eQTL Study was granted by the Institut Universitaire de Cardiologie et de 

Pneumologie de Québec and the UBC-Providence Health Care Research Institute Ethics Boards. 

Lung tissue samples were collected according to the institutional review board guidelines for each the 

participating institutions. Written informed consent was obtained from all patients, or families of 

deceased patients where applicable. 

 

9. ANALYSIS OF GENE EXPRESSION IN THE LUNG eQTL STUDY 

Tissue sample processing in the Lung eQTL Study has been previously described.[31] Lung tissue 

gene expression (mRNA) was measured using the Affymetrix HI133 array consisting of 751 control 

probesets and 51,627 non-control probesets. Gene expression values were extracted using the 

Affymetric Power Tools software (Robust Multichip Average method).[32] After quality control filtering, 

normalized expression data were adjusted for age, sex and smoking status. 

 

10. LUNG cis-eQTL DETERMINATION 

We estimated the associations between SNP and mRNA expression by linear regression models 

assuming additive genotype effects in each site separately. We then performed a meta analysis to 

combine the results. We defined cis-eQTLs as within 1 Mb up- or downstream of the SNP. 
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