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ABsTrACT
Chronic obstructive pulmonary disease (COPD) is an 
umbrella definition encompassing multiple disease 
processes. COPD heterogeneity has been described 
as distinct subgroups of individuals (subtypes) or as 
continuous measures of COPD variability (disease axes). 
There is little consensus on whether subtypes or disease 
axes are preferred, and the relative value of disease axes 
and subtypes for predicting COPD progression is unknown. 
Using a propensity score approach to learn disease axes 
from pairs of subtypes, we demonstrate that these disease 
axes predict prospective forced expiratory volume in 1 s 
decline and emphysema progression more accurately than 
the subtype pairs from which they were derived.

InTroduCTIon
The heterogeneity of chronic obstructive pulmo-
nary disease (COPD) obscures our understanding 
of its natural history and molecular mechanisms. 
COPD heterogeneity is often represented as distinct 
subgroups of subjects (subtypes), but it can also be 
represented as continuous axes of variability, that 
is, disease axes.1 A multicohort study demonstrated 
that subtypes identified by clustering were not 
reproducible across cohorts, whereas disease axes 
from the same cohorts were more consistent.2 There 
is currently no consensus on the best approach to 
characterise COPD heterogeneity.

We define a subtype as a single subgroup of 
subjects and a COPD disease axis as any continuous 
representation of COPD heterogeneity. We describe 
a method, similar in concept to propensity scores,3 
where a pair of COPD subtypes can be used to define 
a single disease axis by using the subtype pair as the 
response in a logistic regression model that predicts 
the likelihood of subtype membership. These predic-
tions constitute a subtype-defined disease axis. For 
example, in the case of chronic bronchitis (CB), the 
CB subtype is a binary yes/no classification based on 
patient symptoms. Conversely, the CB disease axis is a 
continuous measure derived from a predictive model 
that describes the propensity of each subject to have 
CB. Using longitudinal data from the Genetic Epide-
miology of COPD (COPDGene) Study, we demon-
strate that subtype-defined disease axes provide better 
prediction of prospective COPD progression than the 
original subtype pairs from which they were derived.

MeThods
Subjects in COPDGene with complete 5-year 
follow-up data were analysed (n=4726). Four 
general subtype classes were selected for study: CB 
per the American Thoracic Society for the Division 

of Lung Diseases (ATS-DLD) definition,4 the pink 
puffer (PP)/blue bloater (BB) subtype,5 frequent 
exacerbators (≥2 COPD exacerbations over 
the previous 12 months)6 and upper/lower lobe 
emphysema predominant subjects with a log U/L 
ratio >1.5 for upper lobe or <-1.5 for lower lobe 
predominance. We refer to a subtype pair as two 
subtypes that are conceptually related and therefore 
used to construct a disease axis. For example, the 
CB subtype class yields a single subtype pair (CB 
present vs absent), whereas the PP/BB subtype class 
yields two pairs (PP/neither and BB/neither).

For each subtype pair, we used weighted logistic 
regression to identify a linear combination of predic-
tors that provide optimal classification for that pair. 
The beta coefficients of this regression were used 
to calculate the disease axis value for each analysed 
subject. This software is available at https:// github. 
com/ Chen- Jxiang/ SODA. We selected the baseline 
values of 27 variables to serve as the predictors in 
the regression models (see online supplementary 
materials for variables used). Disease axes were 
generated only from visit 1 data.

For the analyses of COPD progression, separate 
regression models were used to relate subtypes or 
disease axis scores to either 5-year change in forced 
expiratory volume in 1 s (FEV1%) of predicted or 
change in emphysema. To formally test for whether 
disease axes provide incremental improvement in 
prediction beyond that provided by a subtype pair, 
we constructed nested regression models in which a 
disease axis was added to a base model containing 
the original subtype pair. Additional information is 
included in the online supplementary file 1.

resulTs
A conceptual overview of our approach is shown in 
figure 1. Subtype definitions and characteristics of 
the subjects are shown in online supplementary tables 
1 and 2. One disease axis was identified for each 
subtype pair, resulting in a total of six disease axes 
(one each for frequent/non-frequent exacerbators 
and presence/absence of CB, and two each for the PP/
BB and upper/lower emphysema subtypes). To deter-
mine how well the disease axes could correctly classify 
their original subtypes, we examined the discrimina-
tion performance which was excellent for the PP/BB 
and upper/lower emphysema subgroups (Area under 
the receiver operating characteristic curve (AUC) 
>0.98), and reasonable for the frequent exacerbator 
(AUC=0.79) and CB subgroups (AUC=0.67). The 
predictors and beta coefficients from these models 
are shown in online supplementary tables 3 and 4.

We then studied how well each subtype pair and 
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Figure 1 Overview of subtype-oriented disease axis approach. 
Chronic bronchitis (CB) subtypes are used as the response variable for 
a predictive model that uses 27 predictors (P1–P27) to classify subjects 
into the proper CB subtype group. The resulting predicted values 
constitute a continuous CB disease axis. Both subtype assignment and 
disease axis values are used as predictors in separate regression models 
in which 5-year change in FEV1 or emphysema serve as the response 
variables. FEV1, forced expiratory volume in 1 s.

Table 1 Regression models using either subtypes or disease axes to predict change in emphysema or change in FEV1% of predicted

Progression 
measure subtype class subtype pair

subtype models disease axis models

Beta (se) P value
% variance 
explained Beta (se) P value

% variance 
explained

∆ emphysema 
(Perc15)

Chronic bronchitis Chronic bronchitis (no vs yes) −1.1 (0.5) 0.05 7.5 −8.0 (0.5) <0.001 12.8

Frequent exacerbator Frequent exacerbators (no vs 
yes)

0.3 (0.8) 0.68 7.5 −2.1 (0.4) <0.001 8.0

Pink puffer (PP)/blue 
bloater (BB)

PP/BB (neither vs PP) −2.7 (2.0) 0.17 7.6 −1.2 (0.2) <0.001 8.5

PP/BB (neither vs BB) −7.8 (3.2) 0.01 −0.3 (0.2) 0.07

Upper/lower emphysema Upper/lower emphysema 
(neither vs LLE)

−6.9 (2.1) 0.001 8.3 6.7 (0.4) <0.001 12.8

Upper/lower Emphysema 
(neither vs ULE)

−4.7 (0.8) <0.001 −5.1 (0.3) <0.001

∆ FEV1 % of 
predicted

Chronic bronchitis Chronic bronchitis (no vs yes) −1.9 (0.4) <0.001 6.0 −2.5 (0.4) <0.001 6.4

Frequent exacerbator Frequent exacerbators (no vs 
yes)

−1.9 (0.6) 0.002 5.8 −2.2 (0.3) <0.001 6.5

PP/BB PP/BB (neither vs PP) −3.5 (1.5) 0.03 5.7 −0.7 (0.1) <0.001 6.4

PP/BB (neither vs BB) −3.2 (2.5) 0.19 −0.6 (0.1) <0.001

Upper/lower emphysema Upper/lower emphysema 
(neither vs LLE)

−0.7 (1.7) 0.68 5.7 −0.6 (0.3) 0.09 5.8

Upper/lower emphysema 
(neither vs ULE)

−2.3 (0.6) <0.001 0.3 (0.2) 0.19

For each outcome and subtype class, two regression models were constructed including either the subtype(s) or disease axes as predictors. The COPD progression outcomes were 
either change in FEV1 % of predicted or change in emphysema between visit 1 and 2. Values in the subtype model columns are from models that include categorical subtype 
assignment as a predictor, and values in the disease axis columns are from models that include the corresponding disease axes as a predictor. All models also include baseline 
FEV1% predicted, baseline emphysema, and current smoking status at visit 1 and 2. PP/BB and upper/lower emphysema subtypes have three categories and thus two contrasts 
are included in the same model for each subtype group.
Perc15, 15th percentile of the lung density histogram.
COPD, chronic obstructive pulmonary disease; FEV1, forced expiratory volume in 1 s; LLE, lower lobe emphysema predominant subtype; ULE, upper lobe emphysema predominant 
subtype.

its respective disease axis could predict two measures of COPD 
progression, change in FEV1 and quantitative CT emphysema 
progression. For both outcomes, we observed that regression 
models containing disease axes as predictors explained a greater 
proportion of the variance of COPD progression than similar 
models containing the subtype pair, with particularly marked 
improvement noted for emphysema progression (table 1). To 
formally test for significant improvement in prediction from 
disease axes, for each subtype-containing model, we added 
the corresponding disease axes and compared the two models 

(table 2).
We also examined how well baseline disease axis values 

predicted the consistency of subtype assignment over time, 
which is an important issue for the CB and frequent exacer-
bator subtypes. We classified subjects as persistent or intermit-
tent members of these subtypes according to their status at both 
COPDGene Study visits, and we observed that persistent subjects 
had higher disease axis values than intermittent subjects (online 
supplementary figures 1 and 2, p<0.001 for CB and p=0.007 
for frequent exacerbators).

dIsCussIon
Previous work has shown that COPD variability typically occurs 
along a continuum.2 Thus, while subtypes may have intuitive 
appeal, disease axes are more accurate. The method presented 
here turns subtypes into disease axes, providing representations 
of COPD heterogeneity that represent a continuum defined by 
two COPD subtypes. These disease axes were more predictive 
of COPD progression than the subtypes from which they were 
derived; because (1) disease axes ‘expand’ subtype information 
to all subjects in a dataset and (2) disease axes extract subtype-re-
lated information from a large number of input variables and 
thus contain more COPD-related information than subtypes 
alone.

Since this method uses predefined subtypes to guide data-
driven analysis, the strengths of this approach are the interpreta-
bility of the disease axes and the improved prediction of disease 
progression. However, when the sole goal is prediction, purely 
data-driven methods may yield superior performance. These 
disease axes were generated in a single cohort, so independent 
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Table 2 Regression models using both subtypes and disease axes to predict change in emphysema or change in FEV1

Progression measure subtype class subtype pair

subtypes disease axes % variance 
explainedBeta (se) P value Beta (se) P value

∆ emphysema (Perc15) Chronic bronchitis Chronic bronchitis (no vs yes) −0.1 (0.5) 0.78 −8.0 (0.5) <0.001 12.8

Frequent exacerbator Frequent exacerbators (no vs yes) 0.9 (0.8) 0.27 −2.2 (0.4) <0.001 8.0

Pink puffer (PP)/blue 
bloater(BB)

PP/BB (neither vs PP) −0.2 (2.0) 0.92 −1.2 (0.2) <0.001 8.6

PP/BB (neither vs BB) −8.2 (3.2) 0.01 −0.2 (0.2) 0.21

Upper/lower emphysema Upper/lower emphysema (neither 
vs LLE)

−1.1 (2.2) 0.60 −3.0 (0.2) <0.001 13.9

Upper/lower Emphysema (neither 
vs ULE)

−0.20 (1.0) 0.84 −2.6 (0.2) <0.001

∆ FEV1% of predicted Chronic bronchitis Chronic bronchitis (no vs yes) −1.7 (0.4) <0.001 −2.3 (0.4) <0.001 6.8

Frequent exacerbator Frequent exacerbators (no vs yes) −1.3 (0.6) 0.02 −2.1 (0.3) <0.001 6.6

rPP/BB PP/BB (neither vs PP) −2.3 (1.6) 0.20 −0.7 (0.1) <0.001 6.4

PP/BB (neither vs BB) −1.4 (2.5) 0.59 −0.6 (0.1) <0.001

Upper/lower emphysema Upper/lower emphysema (neither 
vs LLE)

−0.8 (1.7) 0.63 0.2 (0.1) 0.20 5.9

Upper/lower emphysema (neither 
vs ULE)

−2.8 (0.8) <0.001 0.2 (0.1) 0.13

For each outcome and subtype class, one regression model was constructed for each subtype class. This model contained the relevant categorical subtypes as well as the 
corresponding disease axes. The COPD progression outcomes were either change in FEV1 % of predicted or change in emphysema between visit 1 and 2. All models also include 
baseline FEV1% predicted, baseline emphysema, and current smoking status at visit 1 and 2. PP/BB and upper/lower emphysema subtypes have three categories and thus two 
contrasts are included in the same model for each subtype group, respectively.
Perc15, 15th percentile of the lung density histogram.
COPD, chronic obstructive pulmonary disease; FEV1, forced expiratory volume in 1 s; LLE, lower lobe emphysema predominant subtype; ULE, upper lobe emphysema predominant 
subtype.

assessment of their generalisability is needed. These results 
provide proof of concept that subtype-defined disease axes 
provide more powerful prediction of COPD progression. In 
the future, it would be useful to define disease axes that can be 
produced from readily available variables, which would allow 
disease axes to be generated in a larger set of COPD studies.

In summary, relative to subtypes, disease axes provide more 
accurate clinical predictions, and in the future, disease axes may 
improve our clinical characterisation of COPD and enable more 
powerful biological discovery.
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