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In a recent publication, Lederer and 47 
other editors, including contributors from 
Thorax, put forth firm guidelines to 
improve the rigour and reproducibility of 
causal inference studies using observa-
tional data in respiratory research.1 The 
authors highlight a continued reliance on 
antiquated methods and use of inappro-
priate procedures to account for 
confounding as reasons for a call to action. 
So, why and how must we carefully 
control for confounding? The journal 
includes an editorial offering the clinician 
perspective.2 We complement this edito-
rial from a statistical standpoint.

Concern over confounding has 
persisted throughout the history of obser-
vational studies. In clinical effectiveness 
studies, unadjusted confounding can lead 
to ‘unfair’ comparisons. A well-known 
instance of confounding is referred to as 
Simpson’s paradox.3 Let’s take a look at a 
hypothetical example presented in table 1, 
comparing the performance of two treat-
ments (labelled A and B) and their success 
rates for treating pulmonary exacerba-
tions in cystic fibrosis patients. Here, 
successful treatment for each patient is 
defined as returning to a pre-exacerba-
tion level of forced expiratory volume in 
FEV1% predicted. If you were only given 
the average rate of success between A and 
B, as shown by the overall success rates, it 
may lead you to believe that treatment A 
is doing a better job at combatting pulmo-
nary exacerbations than treatment B. 
However, if you were provided the break-
down of the patient’s condition (mild or 
severe), it becomes quite obvious that 
treatment B is consistently out-performing 
treatment A, regardless of condition. So, 
what’s going on? Confounding is playing a 
trick on us! The underlying disease severity 
confounds the relationship between treat-
ments and their success rates. Treatment 
B, which is believed to be more effective, 

has a 80% chance being prescribed to 
severe patients and successfully helps 
62.5% of them. Meanwhile, only 20% of 
severe patients were prescribed treatment 
A, yielding a success rate of only one in 
two severe patients.However, the overall 
summary aggregates all patients and the 
success rate despite underlying disease 
severity, thereby unfairly lowering the 
overall success rate for treatment B. This 
example demonstrates clearly why we 
should account for confounding and high-
lights the danger of ignoring it. So, how 
do we account for confounding, in order 
to know what treatment is truly better?

The authors thoroughly outline prin-
ciples and recommendations for recog-
nising and accounting for confounding, 
and they tackle several challenges with 
confounding in observational studies. 
They use a simplified example to illus-
trate how smoking confounds the associ-
ation between exercise and lung cancer. 
They make an important suggestion to 
alleviate confounding through use of a 
directed acyclic graph (DAG), which can 
model various kinds of information on the 
causal underpinnings of the research ques-
tion. Explicitly depicting the underlying 
prior beliefs in an observational setting is 
critically important. Without a DAG, the 
door for misinterpretation and drawing 
misleading conclusions is left wide open.

For illustration of the DAG, let’s 
consider an obvious example in health 
disparities research using observational 
data. Researcher A postulates that poor 
health outcome (denoted as Y) in racial 
minorities (exposure denoted as X) is 
mediated through lower family socioeco-
nomic status (SES) as shown in figure 1. 

Researcher B, however, believes SES 
confounds—rather than mediates—race 
and health outcome linkage as depicted 
in figure 2. In addition, both researchers 
acknowledge the complex relationships 
and existence of unmeasured confounders 
(denoted as U), such as neighbourhood 
and exposure to stressors (denoted as SES 
<-- U -->Y). Under the DAG in figure 1 
(a mediation model), it is clear that the 
total effect of race on Y is not identifi-
able. While in the DAG in figure 2 (a 
confounding model), both the total and 
direct effects between race and outcome 
Y can be identified, as long as we have 
adjusted for the confounder SES. Without 
the DAG’s explicit depiction, researcher A 
may proceed with regression modelling, 
including SES in the equation, and claim 
that SES mediates the racial disparity. Yet 
in fact, the results only support associa-
tion rather than mediation. As pointed out 
by the guideline authors, very few obser-
vational research studies present DAGs 
and discuss the impact that unmeasured 
confounding can have on study results. 
While researchers may not always agree 
on the causal underpinnings and the 
DAG cannot itself ameliorate sources of 
confounding, the explicit presentation 
of the DAG facilitates discussion of these 
differences and promotes understanding 
of how distinct conclusions were reached. 
Encouraging the use of DAGs may further 
ensure the reproducibility and integrity 
necessary to establish causal relationships.

To some researchers, these guidelines 
may provoke questions about the validity of 
observational studies. For example, why not 
conduct a randomised controlled trial (RCT) 
to answer causal questions? Well known as 
the ‘gold standard’ for research and hypoth-
esis testing, RCTs draw on targeted popu-
lations using highly controlled protocols. 
On the other hand, observational studies 
typically rely on a heterogeneous popula-
tion examined in a broad range of settings. 
For these reasons, should we compromise 
internal validity for external validity with 
an observational study? To consider this 
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Table 1 Performance of treatments, overall and by condition

Treatment Condition

Outcome

Success rateSuccess Failure

A Mild 175 25 175/200=87.5%

Severe 25 25 25/50=50%

Overall 200 50 200/250=80%

B Mild 45 5 45/50=90%

Severe 125 75 125/200=62.5%

Overall 170 80 170/250=68% 
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question, let’s get back to the Simpson’s 
paradox example in table 1. In this hypo-
thetical scenario, suppose we conduct an 
RCT to find out which treatment truly 
works better. We may recruit and randomise 
240 patients to be treated by therapy A and 
240 to be treated by therapy B. After many 
considerations, such as the inclusion and 
exclusion criteria, as well as patient’s will-
ingness to be randomised into each arm, 
the trial includes 200 mild and 40 severe 
patients. Then, the estimated success rate in 
the 240 patients randomised to treatment 
B is 200×90%+40×62.5%=205/240. 
On the other hand, the success rate in 
240 patients randomised to treatment A is 
200×87.5%+40×50%=195/240. There-
fore, the trial rightfully declares that treat-
ment B is better and concludes that 10/240 
or 4.2 cases out of 100 patients is attribut-
able to better performance of treatment 
B. By randomisation, the patient popula-
tions assigned to the treatment arms are 
completely exchangeable. Thus, the internal 
validity is ensured. However, suppose the 
table 1 tabulates the distribution of the 
entire patient populations; therefore, the 
true distribution of the patient population is 
50% in the mild condition and 50% in the 
severe condition. Then, (90−87.5)×50%
+(62.5−50)×50%=7.5%, or out of every 
200 patients 15 additional successes would 
have been achieved if they were treated by 
B instead of A. We see that the true effective-
ness is much stronger than reported from the 
RCT. This is because of the lack of external 
validity in the RCT approach.

Lederer and colleagues draw an 
important distinction between the goals 
of prediction and causal inference. We 
humans are born to be causal thinkers, 
intuitively giving what we observe causal 
interpretations. That said, we try to avoid 
using causal words when interpreting 
results from a regression model. Often, 
we are baffled by paradoxical research 
findings when certain variables are left in 
or out of a model equation. Our miseries 
could be alleviated by understanding the 
distinction between prediction and causal 
inference from the standpoint of statistical 
intuition. If we undertake an observational 
study to identify a causal relationship, 
then we must completely account for all 
confounding factors. Failure to do so will 
leave the residual error from our regression 
correlated with the exposure variables in 
the model. This violates the fundamental 
assumptions of independent residuals in 
a regression model, which are critical to 
ensuring unbiased parameter estimates. 
The regression model is a powerful tool 
devised for prediction and will do its best 
to minimise prediction error. This method 
produces an accurate prediction model by 
contributing the effect in the uncontrolled 
confounding to its correlated exposure 
variables and thus the model coefficients. 
While it is typically impossible to account 
for all present confounding, in an RCT 
setting, the randomisation device serves 
to remove the confounding effect (both 
measured and unmeasured); therefore, 
the prediction model could be used for 

causal purposes. This is the only instance 
in which prediction and causation are 
equivalent.

Can we understand a causal question 
using observational data? Answers to this 
question are still under debate in many 
contexts, although seminal demonstra-
tion has occurred in observational studies 
of cigarette smoking and lung cancer.4 
Despite fast adoption of causal inference 
methods, such as the theory of Neyman-Ru-
bin's potential outcomes framework,5 
many questions remain to be clarified. In 
order to control for higher dimensions of 
confounding variables, propensity scores 
have almost become the default approach. 
Biostatisticians, however, are still debating 
on how well the propensity score method 
performs when subjected to model misspec-
ification or when important confounders or 
higher order terms are left out of models.6–8 
Can we really call the results from applying 
causal inference analyses ‘causal’? The 
guidelines article suggests one may wish to 
call the results ‘casual associations’, while 
others encourage the use of the term ‘causal’ 
when necessary methodological rigour is 
applied to analysing observational data.9 
The field of causal inference is fast evolving 
in statistics and epidemiology. Undeniably, 
the advances in methodologies and publica-
tion of guidelines are bringing about further 
clarity and producing causal interpretation 
to the findings using observational data, 
similar, in some respects, to a well-con-
ducted RCT study. As we continue sharp-
ening causal inference methods and advance 
our ability to collect well-measured vari-
ables that allow us to minimise the impact 
of unmeasured confounders in observa-
tional settings, we may soon find that we 
can confidently regard the statistical results 
from an observational study as ‘causal’.

Correction notice This article has been corrected 
since it was published. Major changes have been made 
to the text in the body of the article and Table 1.
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Figure 1 Mediation model as shown using a directed acyclic graph. SES, socioeconomic status.

Figure 2 Confounder model as shown using a directed acyclic graph. SES, socioeconomic status.

324 Huang B, Szczesniak R. Thorax April 2019 Vol 74 No 4

 on A
pril 23, 2024 by guest. P

rotected by copyright.
http://thorax.bm

j.com
/

T
horax: first published as 10.1136/thoraxjnl-2018-212780 on 7 F

ebruary 2019. D
ow

nloaded from
 

http://thorax.bmj.com/


Editorial

To cite Huang B, Szczesniak R. Thorax 
2019;74:323–325.

Accepted 14 January 2019

 ► http:// dx. doi. org/ 10. 1136/ thoraxjnl- 2018- 212488

Thorax 2019;74:323–325.
doi:10.1136/thoraxjnl-2018-212780

REFEREnCES
 1 Lederer DJ, Bell SC, Branson RD, et al. Control of 

confounding and reporting of results in causal inference 
studies. Guidance for authors from editors of respiratory, 
sleep, and critical care journals. Ann Am Thorac Soc 
2019;16:22–8.

 2 Quint JK, Minelli C. Can’t see the wood for the trees—
confounders, colliders and causal inference: a clinician’s 
approach. Thorax 2019;74:321–2.

 3 Wagner CH. Simpson’s paradox in real life. The 
American Statistician. 1982;35:46–8.

 4 Cornfield J, Haenszel W, Hammond EC, et al. Smoking 
and lung cancer: recent evidence and a discussion of 
some questions. J Natl Cancer Inst 1959;22:173–203.

 5 Rubin DB. Causal inference using potential outcomes: 
design, modeling, decisions. J Am Stat Assoc 
2011;100:322–31.

 6 Tsiatis AA, Davidian M. Comment: demystifying double 
Robustness: a comparison of alternative strategies for 
estimating a population mean from incomplete data. 
Stat Sci 2007;22:569–73.

 7 Gutman R, Rubin DB. Estimation of causal effects of 
binary treatments in unconfounded studies. Stat Med 
2015;34:3381–98.

 8 King G, Nielsen R. Why propensity scores should not be 
used for matching. 2016.

 9 Hernán MA. The C-Word: scientific euphemisms do not 
improve causal inference from observational data. Am J 
Public Health 2018;108:616–9.

325Huang B, Szczesniak R. Thorax April 2019 Vol 74 No 4

 on A
pril 23, 2024 by guest. P

rotected by copyright.
http://thorax.bm

j.com
/

T
horax: first published as 10.1136/thoraxjnl-2018-212780 on 7 F

ebruary 2019. D
ow

nloaded from
 

http://crossmark.crossref.org/dialog/?doi=10.1136/thoraxjnl-2018-212780&domain=pdf&date_stamp=2019-09-25
http://dx.doi.org/10.1136/thoraxjnl-2018-212488
http://dx.doi.org/10.1513/AnnalsATS.201808-564PS
http://www.ncbi.nlm.nih.gov/pubmed/13621204
http://dx.doi.org/10.1214/07-STS227B
http://dx.doi.org/10.1002/sim.6532
http://dx.doi.org/10.2105/AJPH.2018.304337
http://dx.doi.org/10.2105/AJPH.2018.304337
http://thorax.bmj.com/


Correction: Can’t see the wood for the trees: confounders, 
colliders and causal inference- a statistician’s approach

Huang B, Szczesniak R. Can’t see the wood for the trees: confounders, colliders and causal infer-
ence- a statistician’s approach. Thorax 2019;74:323–325. doi: 10.1136/thoraxjnl-2018-212780
 
Significant changes have been made to the text of this article, including Table 1, since it was 
first published online and in print. The correct version is available online here: http:// dx. doi. 
org/ 10. 1136/ thoraxjnl- 2018- 212780

© Author(s) (or their employer(s)) 2019. No commercial re- use. See rights and permissions. Published by BMJ.

Thorax 2019;74:e2. doi:10.1136/thoraxjnl-2018-212780corr1

Miscellaneous

  1 of 1Thorax 2019;74:e2. doi:10.1136/thoraxjnl-2018-212780corr1

http://dx.doi.org/10.1136/thoraxjnl-2018-212780
http://dx.doi.org/10.1136/thoraxjnl-2018-212780
http://crossmark.crossref.org/dialog/?doi=10.1136/thoraxjnl-2018-212780corr1&domain=pdf&date_stamp=2019-10-05
https://www.brit-thoracic.org.uk
http://thorax.bmj.com

	Can’t see the wood for the trees: confounders, colliders and causal inference - a statistician's approach
	References

	/content/thoraxjnl/vol74/issue12/pdf/e2.pdf
	Correction: Can’t see the wood for the trees: confounders, colliders and causal inference- a statistician’s approach


