Reference values for oxygen saturation from sea level to the highest human habitation in the Andes in acclimatised persons

ABSTRACT
Oxygen saturation, measured by pulse oximetry (SpO₂), is a vital clinical measure. Our descriptive, cross-sectional study describes SpO₂ measurements from 6289 healthy subjects from age 1 to 80 years at 15 locations from sea level up to the highest permanent human habitation. Oxygen saturation measurements are illustrated as percentiles. As altitude increased, SpO₂ decreased, especially at altitudes above 2500 m. The increase in altitude had a significant impact on SpO₂ at altitudes above 2500 m. The increase in oxygen saturation from sea level to the highest permanent human habitation was measured by pulse oximetry offering new insights into oxygen saturation levels at different altitudes. We recruited subjects between 1 and 80 years with a history of the following exclusion criteria. A total of 6289 subjects were studied: 47.2% (n=2967) males and 52.8% females (n=3322). The median age of Cole and Green7,8 and fitted using the LMS method. Descriptive statistics were used to summarise characteristics of the subjects. Measurement of SpO₂
SpO₂ was measured using a pulse oximeter (Nellcor 560, Hayward, California, USA), with sensors appropriate to the weight of the subject. SpO₂ measurements were recorded every 10 s for a total of six measurements and the average was used to determine SpO₂ for each study subject, as described in previous studies.3
At the end of the study, we compared SpO₂ measurements against simultaneous measurements of arterial oxygen saturation (SaO₂) by arterial blood gases in 10 hospitalised patients, at sea level. The average of (SaO₂ − SpO₂) was 1.48%. This was within the expected value of ±2% for a range of SpO₂ measurements between 70% and 100% reported by the manufacturer.6
To assess the reproducibility of our data, at 5100 m, we measured SpO₂ twice in 23 subjects waiting 30 min before taking the second measurement. For this test, we used the Fingertip Pulse Oximeter MD300C1. The average difference between SpO₂ measured by the two devices (Nellcor-MD300C1) was −0.8%.

STATISTICAL ANALYSIS
Descriptive statistics were used to summarise characteristics of the subjects. Constructing oxygen centile charts
SpO₂ data were entered into Microsoft Excel and were analysed and charted using Stata (Intercooled 10, Stata Corp, College Station, Texas, USA). The SpO₂ centiles were calculated using the LMS method of Cole and Green7,8 and fitted using the LMSChartMaker Light V2.3 (Institute of Child Health, London, England). These values were then used to illustrate the 2.5th, 10th, 25th, 50th, 75th, 90th and 97.5th centile for SpO₂ for each age group according to residential altitude (see online supplement).

RESULTS
We studied subjects residing at 15 specific altitudes. We initially evaluated 6601 subjects. Three hundred and twelve met exclusion criteria. A total of 6289 subjects were studied: 47.2% (n=2967) males and 52.8% females (n=3322). The median (IQR) for all SpO₂ measurements at each altitude (metre) were respectively: 99 (98–99) at 154 m; 99 (98–99) at 2500 m; 97 (96–98) at 2000 m; 97 (96–98) at 2335 m; 96 (95–97) at 2880 m; 95 (94–96) at 2000 m; 97 (96–99) at 2335 m; 96 (95–97) at 2500 m; 95 (94–96) at 2880 m; 92 (90–93) at 3600 m; 90 (88–91) at 3950 m; 87 (85–89) at 4100 m; 87 (85–89) at 4338 m; 87 (85–89) at 4500 m; 86 (85–89) at 4715 m; 5100 m (n=299).

Figure 1 2.5th, 10th, 25th, 50th, 75th, 90th, and 97.5th SpO₂ percentiles for all subjects according to altitude. (n=6289) distributed by the following altitudes: 154 m (n=709), 2500 m (n=299), 2000 m (n=422), 3600 m (n=361), 3950 m (n=350), 4100 m (n=644), 4338 m (n=457), 4500 m (n=525), 4715 m (n=251), 5100 m (n=299).

1. Pulse oximetry measurements of oxygen saturation (SpO₂) are lower at altitude compared with those at sea level. However, the expected SpO₂ at a given altitude is unclear and has been suggested as a range of values rather than a specific number.2
2. Reference values for oxygen saturation from sea level to the highest human habitation in the Andes in acclimatised persons
3. Pulse oximetry has led to a great advancement in patient management offering non-invasive estimation of arterial oxygen saturation. It is routinely used in emergency departments, wards, intensive care and other medical situations. At high altitudes, physiological ventilation parameters like plasma bicarbonate are different.1
4. The increase in oxygen saturation from sea level to the highest permanent human habitation was measured by pulse oximetry offering new insights into oxygen saturation levels at different altitudes. We recruited subjects between 1 and 80 years with a history of the following exclusion criteria. A total of 6289 subjects were studied: 47.2% (n=2967) males and 52.8% females (n=3322). The median age of Cole and Green7,8 and fitted using the LMS method. Descriptive statistics were used to summarise characteristics of the subjects. Measurement of SpO₂
SpO₂ was measured using a pulse oximeter (Nellcor 560, Hayward, California, USA), with sensors appropriate to the weight of the subject. SpO₂ measurements were recorded every 10 s for a total of six measurements and the average was used to determine SpO₂ for each study subject, as described in previous studies.3
At the end of the study, we compared SpO₂ measurements against simultaneous measurements of arterial oxygen saturation (SaO₂) by arterial blood gases in 10 hospitalised patients, at sea level. The average of (SaO₂ − SpO₂) was 1.48%. This was within the expected value of ±2% for a range of SpO₂ measurements between 70% and 100% reported by the manufacturer.6
To assess the reproducibility of our data, at 5100 m, we measured SpO₂ twice in 23 subjects waiting 30 min before taking the second measurement. For this test, we used the Fingertip Pulse Oximeter MD300C1. The average difference between SpO₂ measured by the two devices (Nellcor-MD300C1) was −0.8%.

STATISTICAL ANALYSIS
Descriptive statistics were used to summarise characteristics of the subjects. Constructing oxygen centile charts
SpO₂ data were entered into Microsoft Excel and were analysed and charted using Stata (Intercooled 10, Stata Corp, College Station, Texas, USA). The SpO₂ centiles were calculated using the LMS method of Cole and Green7,8 and fitted using the LMSChartMaker Light V2.3 (Institute of Child Health, London, England). These values were then used to illustrate the 2.5th, 10th, 25th, 50th, 75th, 90th and 97.5th centile for SpO₂ for each age group according to residential altitude (see online supplement).

RESULTS
We studied subjects residing at 15 specific altitudes. We initially evaluated 6601 subjects. Three hundred and twelve met exclusion criteria. A total of 6289 subjects were studied: 47.2% (n=2967) males and 52.8% females (n=3322). The median (IQR) for all SpO₂ measurements at each altitude (metre) were respectively: 99 (98–99) at 154 m; 99 (98–99) at 2500 m; 97 (96–98) at 2000 m; 97 (96–98) at 2335 m; 96 (95–97) at 2880 m; 95 (94–96) at 2000 m; 97 (96–99) at 2335 m; 96 (95–97) at 2500 m; 95 (94–96) at 2880 m; 92 (90–93) at 3600 m; 90 (88–91) at 3950 m; 87 (85–89) at 4100 m; 87 (85–89) at 4338 m; 87 (85–89) at 4500 m; 86 (85–89) at 4715 m; 5100 m (n=299).
Oxygen saturation measurements

SpO$_2$ measurements illustrated as percentiles for children. (A) Represents children 1–5 years (n=994) with N for specific altitude in the same order as figure 1 (n=64, 91, 69, 26, 70, 87, 95, 140, 30, 46, 91, 47, 36, 28, 74). (B) Represents children 6–17 years (n=2379) (n=281, 144, 146, 116, 171, 234, 122, 181, 117, 126, 121, 133, 168). Adults 18–50 (C) (n=2195) (n=310, 120, 28, 40, 239, 70, 134, 56, 136, 45, 297, 247, 353, 68, 52) and 51–80 years (D) (n=721) (n=54, 50, 27, 25, 53, 45, 78, 57, 139, 37, 15, 22, 5), adults according to altitude.

85 (83–88) at 4715 m; 81 (78–84) at 5100 m.

Discussion

We obtained measurements from over 6000 subjects, from 1 to 80 years old, from sea level to the highest permanent human habitation located in Peru at 5100 m. This is the first study to provide reference charts for the expected range of SpO$_2$ measurements by age group and altitude using percentiles by the LMS method.

We have shown the expected reduction of SpO$_2$ with altitude, an effect that is more evident at altitudes over 2500 m. We have also shown increased variability in the range of SpO$_2$ measurements at higher altitudes. Our observation could be explained by a genetic variability in the hypoxic ventilatory response. It is noteworthy that at 5100 m, the median SpO$_2$ of 81% could correspond to a PO$_2$ less than 50 mm Hg according to the oxygen dissociation curve. This is less than half of the normal PO$_2$ at sea level.

Pulse oximetry utility in clinical care outside the operating theatre has been supported by studies at sea level and at high altitude. Having a reference value for SpO$_2$ is needed in clinical management at high altitude locations.

There are some limitations to our findings and analysis. We did not enrol subjects over 80 years or children less than 1 year. Our study does not apply to non-acclimatised individuals. We did take a clinical history and conducted a physical examination of all subjects. However, we did not conduct further testing, such as chest radiography, spirometry or haemoglobin measurement, to rule out pathology not evidenced by clinical examination. Therefore, in evaluating patients at high altitude, their history and clinical presentation must be incorporated into deciding whether an individual SpO$_2$ measurement should raise concern for a patient at their usual residential altitude.

All our subjects were Andean Natives and Hispanics and care should therefore be taken in applying these results to other ethnicities and to other parts of the world. For example, Tibetans have different physiological traits for the oxygen delivery process and might have different SpO$_2$ measurements at the same altitude as our subjects.

In conclusion, our data provide a reference range for SpO$_2$ in people from 1 to 80 years from sea level to the highest city in the world, contributing to global knowledge of expected SpO$_2$ measurements at any given habitable altitude.
Research letter

Hospital Nacional Dos de Mayo, Institute of Clinical Research, Lima, Peru

Mount Sinai Medical Center, Miami, USA

Resocentro, Lima, Peru

Hospital Nacional Guillermo Almenara Irigoyen, Lima, Peru

Centro de Salud Zalfonada, Zaragoza, Spain

Hospital Nacional Hipólito Unanue, Lima, Peru

Centro de Salud Zalfonada, Zaragoza, Spain

Hospital Universitario Príncipe de Asturias, Madrid, Spain

Clinica Concebrí, Lima, Peru

Center for international Child Health, University of Melbourne, Royal Children’s Hospital, Melbourne, Australia

Correspondence to Dr Jose Rojas-Camayo, Universidad Peruana Cayetano Heredia, Lima 31, Peru; joserojas18@hotmail.com

Contributors All authors were involved in the design of the study and collection of clinical data. JAD, JRC, and CRM performed the data analysis. JRC, CRM, DC, JAD, MP, VYL and RS drafted the final manuscript and all authors reviewed and made amendments.

Competing interests None declared.

Patient consent Obtained.

Ethics approval Ethics Committee at Hospital Nacional Docente Madre Niño San Bartolomé, Lima-Peru.

Provenance and peer review Not commissioned; externally peer reviewed.

© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

► Additional material is published online only. To view please visit the journal online (http://dx.doi.org/10.1136/thoraxjnl-2017-210598)

Received 5 June 2017

Revised 6 September 2017

Accepted 25 September 2017

Published Online First 20 October 2017

doi:10.1136/thoraxjnl-2017-210598

REFERENCES

