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Lung function testing  

The subjects had been recruited into three previously published prospective studies.[1-3] 

between February 2010 and April 2015.  Lung function testing was conducted in the 

Amanda Smith Unit at King’s College Hospital NHS Foundation Trust.  No participant 

underwent testing within two weeks of an upper respiratory tract infection or within a month 

of suffering a vaso-occlusive crisis.  A history was taken of past and current respiratory 

symptoms and medication for respiratory problems. Standing height was measured using a 

wall-mounted stadiometer (Holtain ltd, Crymych, Dyfed, UK), and weight using electronic 

weighing scales (Seca ltd, Birmingham, UK). Subjects were assessed while wearing a nose-

clip and breathing through a mouthpiece. Respiratory system resistance at a frequency of 

5Hz (R5) was measured during a 90 second period of tidal breathing using impulse 

oscillometry (IOS, Jaeger Masterscreen IOS, Carefusion Ltd, Basingstoke UK). The results 

were expressed as the percent predicted for height.[4]  The mean of two measurements 

within 10% of each other was reported. IOS was performed before spirometry and 

plethysmography, that is prior to any changes in bronchial smooth muscle tone caused by 

deep inspiration during those measurements. Spirometry and lung volume measurements 

were performed using a pneumotachograph based system (Jaeger Masterscreen PFT, 
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Carefusion Ltd, Basingstoke UK).   Forced expiratory volume in one second (FEV1), vital 

capacity (VC), mean maximum expiratory flow (FEF25-75), total lung capacity (TLC), residual 

volume (RV), transfer factor for carbon monoxide (DLCO), and transfer coefficient (KCO) 

were assessed and the results expressed as the percent predicted for height, sex, age and 

race where appropriate.[5, 6]   DLCO and KCO were corrected for haemoglobin 

concentration.  Spirometry was repeated after administration of 400mcg salbutamol via MDI 

and spacer and an increase in FEV1 of twelve percent or greater was considered a positive 

response.[7] Ethnic-specific reference equations were not available for static lung volumes 

or gas transfer; therefore the predicted values were adjusted for people of African descent 

using appropriate correction factors (-12% for adults and -6% for children).[7, 8] Patients 

were diagnosed with a restrictive abnormality if their TLC was less than the lower limit of 

normal (LLN) with a normal FEV1:VC, an obstructive abnormality if their FEV1:VC was less 

than LLN and a mixed pattern if both their TLC and FEV1:VC were less than the LLN.[7]   

 

Analysis 

Inclusion of a large number of variables for small datasets may degrade the final 

classification produced by cluster analysis [9, 10], therefore, the smallest number of 

biomarkers necessary to adequately  characterise previously described lung function or 

haematological abnormalities, or which relate to clinical severity were used  Functionally 

redundant variables were not included (for example those which did not give additional 

information to characterise the lung function abnormalities).  This included VC, RV, FRC, 

FEF25-75 and KCO when FEV/VC and TLC were available. 

   

Tree-based methods select variables based on their capacity to discriminate between 

categories of the response variable (in this case cluster number) and produce a simple 

decision tree which can be applied to data from a new subject to estimate, with optimal 
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reliability, to which cluster the subject is most likely to belong.  Importantly, with a sufficiently 

reliable tree model, knowledge of all the variables used in the clustering is not required, and 

thus these methods may provide an easily implementable method of stratification based on 

readily available clinical measurements.   

  

Clustering was performed for solutions comprising two to ten clusters and the solution with 

the highest CritCF was considered optimal. All results were standardized prior to clustering 

using a nonparametric standardisation procedure (the median value for the column variable 

was subtracted from each data point and the result was divided by the median absolute 

deviation of the column variable).  Multiple imputation using chained equations was used to 

assess the impact of missing values on the clustering solution.[11]  Fifty imputed datasets 

were generated using all variables included in the clustering.[12]  The clustering procedure 

described above was then performed on each of the imputed datasets and the CritCF was 

used to select an optimal clustering solution for each imputed dataset. The distribution of 

clustering solutions as a function of imputation was then examined and the clustering 

solution that occurred most frequently in the fifty imputed datasets was used.  The clustering 

was visualised using a discriminant-coordinates biplot, generated by canonical variate 

analysis, which projects multidimensional data into a lower dimensional space while 

preserving as much information as possible, to provide an easily interpretable two-

dimensional representation of cluster separation and density. Ninety-five percent confidence 

regions were also derived for the clusters.[13]  Variables were then compared across 

clusters using Kruksal-Wallis tests with post-hoc multiplicity-adjusted pairwise comparisons.  

Cluster profiles were presented graphically using a radial plot.  Radial plots provide a 

method of displaying multiple quantitative variables on a single polar grid, where the length 

of each ‘spoke’ is proportional to the magnitude of the standardised variable.    A conditional 

inference tree analysis was used to derive a stratification algorithm to predict cluster 

membership based on minimal subset of input variables (R package “party”, version 1.1-
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25).[14]  Tree-based methods select variables based on their capacity to discriminate 

between categories of the response variable (in this case cluster number) and produce a 

simple decision tree which can be applied to data from a new subject to estimate, with 

optimal reliability, to which cluster the subject is most likely to belong.  Importantly, with a 

sufficiently reliable tree model, knowledge of all the variables used in the clustering is not 

required, and thus these methods may provide an easily implementable method of 

stratification based on readily available clinical measurements. The dataset was randomly 

partitioned into a “training set”, comprising seventy-five percent of the cohort used in the 

cluster analysis, with the remaining twenty-five percent forming the “validation set”.  The 

training set was used to derive a conditional inference tree model, which was then tested 

using the unseen data from the validation set to assess the predictive accuracy of the model 

when classifying new data.  

 

RESULTS  

Data for one or more haematological variables were missing in 24 patients (21%), 

accounting for a total of 6.5% of the dataset (i.e. 6.5% of a total possible dataset of 11 

measurements from each of 114 patients). Missing data rates were similar across the 

clusters (p=0.580). Twenty-one patients (18%) had an obstructive, twenty-three (20%) a 

restrictive and ten (9%) a mixed ventilatory defect. Thirty-eight patients (33%) had a history 

of ACS and nine (7%) had a significant response to bronchodilator.  Fifteen (13.1%) were 

taking hydroxyurea and twenty-six (22.8%) were receiving regular blood transfusions.  Data 

on non-elective admissions and ACS episodes were available for a period of median 4.2 (2.3 

– 6.8) years following testing in 103 patients.  The frequency of hospital admissions 

(p=0.025), but not ACS (p=0.821), was significantly different between clusters.  On post-hoc 

testing, cluster three had a greater frequency of hospital admissions than cluster one and 

cluster two (0.69 (0.0 – 6.1) events/year versus 0.25 (0.0 – 1.50) events/year and 0.38 (0.0 – 
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3.02) events/year, respectively, both p<0.05). Those results were unchanged after adjusting 

for differences in hydroxyurea use and chronic transfusion.   

 

DISCUSSION 

This study has strengths and some limitations.  A strength was the use of a well-

characterised cohort of patients with SCD, spanning a wide age range.  We also assessed 

the impact of missing data on the clustering solution. Our data were from a single centre, 

which obviates the potential effects of site-specific variations in equipment and measurement 

protocols, but may limit the generalisability of the results, which therefore require evaluation 

in an external validation cohort.  Longitudinal assessment of subjects would be required to 

evaluate the stability of the phenotypic groups over time. Additionally, our data included 

relatively low (13%) and high (22.8%) proportions of patients on hydroxyurea and chronic 

transfusion therapy, respectively.  This too might impact on the generalisability of our 

clustering solution. A further limitation might appear to be that this was a secondary analysis 

of existing data and complete haematological data were not available for all patients.  Our 

multiple imputation analysis, however, suggested that missing data did not have a significant 

impact on the clustering obtained.  Our use of haematological data obtained for routine 

clinical use did restrict the variables we were able to include in the analysis.  It might have 

been informative to add HbF as high concentrations are known to exert a protective effect 

against HbS polymerisation and may lead to a milder phenotype [15], but these data were 

not available in a large enough number of patients.    We expressed the lung function results 

as a percentage of predicted values rather than z-scores, but lung function abnormalities 

were defined using the lower limit of normal as recommended by current guidelines. Whilst 

z-scores are used in the paediatric literature, their use has not been adopted widely in 

studies of adult lung function.  Since our cohort contained a substantial proportion of adult 

patients, we expressed the lung function results as a percentage of predicted which would 



6 
 

be understood to both audiences.  We used ethnic-specific reference values for spirometric 

results, but these are not available for static lung volumes and IOS. Static lung volume and 

impulse oscillometry results were related to reference ranges derived from Caucasian 

subjects, but the two groups were matched for ethnic origin and the same reference ranges 

were used in all patients, thus the comparisons between the clusters were valid.  We used 

conditional inference tree analysis to derive our stratification algorithm based on a reduced 

set of variables; tree based methods may attribute more weight to larger clusters, which may 

be problematic where small clusters are thought to be of greater importance.  In these 

circumstances, the use of group size weighted methods of classification may be helpful.  In 

our analysis, however, poorer outcomes were seen only in cluster three (n=45), so that 

limitation is unlikely to have substantially influenced interpretation of our results. We have 

identified three distinct phenotypes of children and young adults with sickle cell disease.  

The clusters were associated with different patterns of lung function impairment and 

haematological variables and hence may reflect different disease processes.  The 

classification of SCD patients by phenotypes may help to provide better management.  
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Table A: Characteristics of the entire cohort   

Results are expressed as median (IQR).  

BDR: bronchodilator reversibility 

*Lung function tests are expressed as the percentage predicted for age and/or height. 

Age (yrs) 14.5 (10.6 – 17.9) 

FEV1:VC*  93.7 (88.5 – 100.8) 

Rrs5
* 134.4 (113.0 – 161.2) 

TLC* 87.1 (80.4 – 97.1) 

DLCO* 87.4 (78.4 – 96.6) 

PCBV (ml/l) 24.0 (20.9 – 29.6) 

[Hb] (g/dl) 8.9 (7.9 – 10.1) 

SpO2 (%) 96.2 (94.0 – 99.0) 

LDH (IU/L) 495 (387.8 – 649.2) 

WCC (x109/L) 10.1 (6.8 – 12.0) 

Reticulocytes (%) 9.8 (7.0 – 13.5) 

ACS ever 33.3% 

Lung function abnormalities:  

Obstructive n (%) 21 (18%) 

Restrictive n (%) 23 (20%) 

Mixed n (%) 10 (9%) 

BDR% 7% 
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FIGURE LEGENDS 

 

Figure S1:      

A:  Box plot of the between-imputation distribution of CritCF by number of clusters.  

B: Selection frequency of clustering solution over multiple imputations by number of clusters. 

Summary data for the three clusters are given in Table 1 

 

Figure S2:   

Discriminant projection plot of clustering solution.  The inset shows the projection basis 

vectors: arrows indicate the direction of increase for each variable and the line length reflects 

the extent to which each variable contributes to the point coordinates.  Shaded areas are the 

95% confidence regions for each cluster assuming eliptical clusters.  Subjects in the 

validation set who were misclassified by the conditional inference tree are indicated by 

circled points. 

 

Figure S3:  

Radial plots showing physiological profiles for the three clusters.  Data are standardized 

(expressed as z-scores referenced to the whole cohort) and the points represent medians.  

The dashed circle is the whole cohort average. 

 


