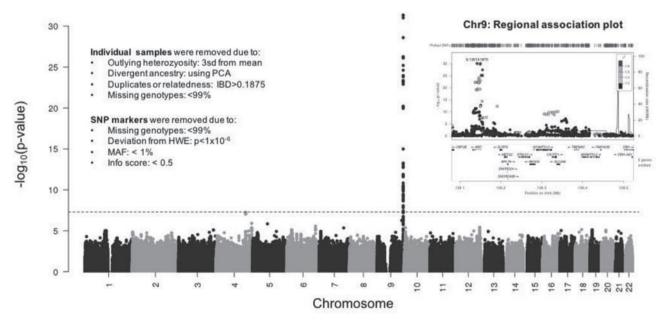
Advances in understanding chronic thromboembolic disease and pulmonary hypertension

S108 GENOME-WIDE ASSOCIATION STUDY IN CHRONIC THROMBOEMBOLIC PULMONARY HYPERTENSION REVEALS NEW INSIGHTS INTO AETIOLOGY

¹M Newnham, ¹M Toshner, ¹M Bleda, ²WR Auger, ³JA Barberà, ⁴HJ Bogaard, ⁵J Cannon, ⁶G Coghlan, ⁷PA Corris, ⁸M Delcroix, ⁵J Dunning, ⁹H Elding, ¹⁰S Gibbs, ¹C Hadinnapola, ⁵D Jenkins, ¹¹D Kiely, ¹²I Lang, ¹³E Maher, ⁵C Ng, ¹⁴A Peacock, ⁵N Screaton, ⁵K Sheares, ¹⁵M Simpson, ⁹N Soranzo, ⁵D Taboada, ¹⁵R Trembath, ⁵S Tsui, ¹⁶MR Wilkins, ¹⁷SJ Wort, ¹S Gräf, ⁵J Pepke-Zaba, ¹NW Morrell. ¹University of Cambridge, Cambridge, UK; ²UC San Diego, San Diego, USA; ³University of Barcelona, Barcelona, Spain; ⁴VU Medical Centre, Amsterdam, Netherlands; ⁵Papworth Hospital, Cambridge, UK; ⁶Royal Free Hospital, London, UK; ⁷Newcastle University, Newcastle, UK; ⁸KU Leuven – University of Leuven, Leuven, Belgium; ⁹Sanger institute, Hinxton, UK; ¹⁰Hammersmith Hospital, London, UK; ¹¹Royal Hallamshire Hospital, Sheffield, UK; ¹²Medical University of Vienna, Vienna, Austria; ¹³Kerckhoff Heart and Lung Centre, Bad Nauheim, Germany; ¹⁴Golden Jubilee Hospital, Glasgow, UK; ¹⁵Kings College, London, UK; ¹⁶Imperial College, London, UK; ¹⁷Royal Brompton Hospital, London, UK

10.1136/thoraxjnl-2017-210983.114


Introduction Chronic thromboembolic pulmonary hypertension (CTEPH) is an infrequent but important complication of acute pulmonary embolism (PE). Thrombophilias and non-O blood groups are genetic risk factors for venous thromboembolism (VTE), however they are not independently associated with CTEPH. Identifying genetic risk factors for CTEPH would provide important insights into pathobiology and might allow risk-stratification following PE. We undertook a genome-wide association study (GWAS) in CTEPH to identify novel disease loci.

Methods To date, 1457 Caucasian CTEPH patients were enrolled from 10 European and US Centres and compared to 1536 healthy Caucasian controls from the Wellcome Trust Case Control Consortium. Genotyping was performed using the HumanOmniExpressExome-8 array. Quality control criteria and statistical analysis are summarised in figure 1.

Results 1250 CTEPH cases, 1492 controls and 7 million single-nucleotide polymorphisms (SNPs) were included after quality control exclusions. Two loci, in chromosomes 4 and 9 were significantly associated with CTEPH (figure 1). The lead SNP in chr9 (rs532436, OR=2.38, p= 4.6×10^{-32}) is highly correlated with the tagging SNP for the A1 blood group (rs507666, R²=0.99). Reconstructing genetic ABO groups confirmed an over-representation of the A1A1 group in CTEPH compared to controls (7% vs. 2.9%, OR 4.5). Additionally, there were 11 significant SNPs in the chr9 *ADAMTS13* gene locus that is moderately correlated with *ABO* (R²=0.33).

The lead SNP in chr4 (rs13130318, OR=1.4, p= 5.6×10^{-8}) is highly correlated with a missense variant in *FGG* (rs6050, R²=0.89) associated with decreased fibrinogen protein and increased resistance to fibrinolysis in CTEPH. There were no associations at the *F5* locus, which is highly significant in VTE.

Conclusions We report the first GWAS in CTEPH, identifying at least 2 genetic loci associated with the disease. The *ABO* association is driven by the A1 blood group and represents the largest population attributable genetic risk factor for CTEPH, which is higher than previously reported for VTE. The potential *ADAMTS13* association is a plausible biological candidate, and further work will establish whether it is independent from *ABO*. The lack of associations with other loci found in VTE suggests that *ABO* might have a pathobiological role in CTEPH in addition to its contribution to VTE.

Abstract S108 Figure 1 Manhattan plot of significant loci in chromosome 4 and 9 associated with CTEPH. Quality control exclusion thresholds and chromosome 9 regional association plot shown within figure. Dotted line represents a Genome-wide significance threshold of $p=5x10^{-8}$ (Bonferroni). Imputaton was performed from the Haplotype Reference Consortium (Sanger imputation service). An additive model of association was applied using logistic regression with gender and 1 principal component as covariates. HWE (Hardy-Weinberg equilibrium), IBD (iderity by descent), MAF (minor allele frequency), PCA (principal component analysis), SNP (single nucleotide polymorphism).