New approaches to characterising paediatric respiratory diseases

GENETIC AND STRUCTURAL CHARACTERISATION OF OUTER DYNEIN ARM VARIANTS CAUSING PRIMARY CILIARY DYSKINESIA

S69 1F Daudvohra, 2MR Fassad, 3T Burgoyne, 4AV Rogers, 5MR Loebinger, 6C Hogg, 4HM Mitchison, 1A Shomark. 1Royal Brompton and Harefield NHS Trust, UCL Great Ormond Street Institute of Child Health and Imperial College London, London, UK; 2Human Genetics Department, Medical Research Institute, Alexandria University, Egypt and UCL Great Ormond Street Institute of Child Health, London, UK; 3Royal Brompton and Harefield NHS Trust, London, UK; 4UCL Great Ormond Street Institute of Child Health, London, UK; 5School of Medicine, University of Dundee and Royal Brompton and Harefield NHS Trust, London, UK.

10.1136/thoraxjnl-2017-210983.75

Introduction Primary ciliary dyskinesia (PCD) is a heterogeneous, recessive disease, characterised by dysfunction of motile cilia that arises from structural defects. Symptoms include chronic pulmonary disease, rhinosinusitis, otitis media, laterality defects, congenital heart disease and subfertility. The most commonly affected cilia structure is the outer dynein arm (ODA), a complex structure composed of a docking complex and multiple heavy, light and intermediate dynein chains. An understanding of the relationship between the genetic and structural phenotype of ODA variants will allow patient stratification and improve diagnosis through verification of new candidate genes.

Methods 195 PCD patients were genotyped using next generation sequencing. Candidate variants were confirmed by Sanger sequencing and familial segregation analysis. For selected ODA mutations, electron tomography, an extension to transmission electron microscopy, was used to produce high-resolution 3D models of ciliary axonemal microtubular doublets and ODA volume ratios. The data were analysed to determine the impact of eight different gene mutations causing different structural defects of the ODAs.

Results 39% of patients had bi-allelic mutations identified which are associated with ODA structure. These include variants in known PCD genes: DNAH5 (n=39), DNAH11 (n=18), DNAI1 (n=8), DNAI2 (n=5), ARMC4 (n=3), CCDC114 (n=2), DNAI1 (n=1) and mutations in the novel candidate DNAH9. Variants in DNAH9 have been suggested as a cause of PCD previously but disregarded due to lack of phenotypic evidence. 3D models of the ODA complex identified genotype specific changes in the ODA complex in PCD. The ODA structure in PCD was different in the proximal region, in proximity to the microvilli, when compared to the distal region, towards the tip of the axoneme. A significant deficiency in the ODA volume was detected at the distal part of the axoneme in the patient with DNAH9 defects, whereas the proximal portion was unaffected, reflecting the protein position of DNAH9.

Conclusion 3D electron tomography can be used to detect subtle changes in the ultrastructure of the ODA in PCD patients with differences detected in the impact of mutations in proximal versus distal regions of the cilia.