Moderated poster sessions

use of antifibrotics, questions remain about their safety in IPF patients undergoing LTx.

Methods All patients with multidisciplinary team (MDT) diagnosis of IPF that underwent lung transplantation from April 2013 to April 2017 were recruited from a single tertiary centre for ILD and lung transplantation. Retrospective data was obtained from medical notes. Statistical analysis was performed using chi squared test for categorical values and unpaired t-test.

Results 22 IPF patients (male 81.8%, female 18.2%) with mean age of 61.9 (+/-4.9) underwent single (n=16) and double (n=6) LTx. 15 (68%) received antifibrotics during the pre-transplantation period (pirfenidone n=14, nintedanib n=1) and 7 did not. Two patients actually had rheumatoid arthritis associated lung disease and were on immunosuppressant. Average waiting time for LTx was 7.0 months (+/-4.7 months). All patients on antifibrotics were on full dose, although 3 of them had a transient dose interruption at the start of their treatment with antifibrotics. Eight (36%) patients had complications post LTx, of which 4 died (antifibrotics, n=2) after the LTx due to multiple complications. 14 patients (64%) did not have complications at 3 months (antifibrotics n=10). There was no statistical significance between post-operative complication and age (p=0.6), gender (p=0.53) or antifibrotics use (p=0.67).

Conclusion Our data showed similar findings to a recent Belgian study that antifibrotics use prior to LTx does not impact on LTx outcomes or complications.

REFERENCES

M25
WEIGHT LOSS HAS A SIGNIFICANT IMPACT ON ANTI-FIBROTIC DRUG TOLERANCE IN PATIENTS WITH IDIOPATHIC PULMONARY FIBROSIS

RDC Moon, E Barker, S Agnew, J Sutcliffe, A Kivok, LG Spencer. Aintree University Hospital, Liverpool, UK

10.1136/thoraxjnl-2017-210983.447

Introduction and Objectives Nintedanib and pirfenidone are licensed anti-fibrotic therapies (AFT) for the treatment of Idiopathic Pulmonary Fibrosis (IPF).1 Drug discontinuation rates in clinical trials were significant due to many side effects including weight loss. We aimed to establish average weight loss at 12 months in a group of patients commenced on AFT. Methods This was a retrospective cohort study from a single tertiary ILD centre. All patients commenced on AFT for IPF between 1st October 2014 and 31st December 2015 were identified. Patients were assessed at 12 months for adherence to treatment and weight loss. Statistical analysis was conducted using GraphPad software.

Results 137 patients commenced anti-fibrotic medication during the study period (87 Nintedanib, 50 Pirfenidone). At 12 months 84/137 patients (61%) remained on therapy or died tolerating therapy [tolerant cohort], 53/137 patients (39%) either died off therapy or failed to complete 12 months therapy [intolerant cohort], citing side effect burden or disease progression as a reason for treatment discontinuation. 14 patients within this intolerant cohort (25%) reported weight loss as a principal reason for treatment discontinuation [intolerant weight loss cohort]. At initiation of therapy, mean weight and BMI did not differ significantly between the tolerant and intolerant cohorts (tolerant vs intolerant; weight 81.8 kg vs 77.3 kg, p=0.13; BMI 29.1 vs 28.2, p=0.33). At 12 months, mean weight and BMI differed significantly between groups (weight 79.5 kg vs 68.7 kg, p=0.02; BMI: 28.2 vs 25.2, p=0.03). Within the intolerant weight loss cohort mean weight change at 12 months compared to the tolerant cohort was 8.9 kg vs 4.0 kg (p=0.004). The intolerant cohort was significantly older than the tolerant cohort (p=0.0003).

Conclusions Our data shows that patients intolerant of antifibrotic therapy are more likely to be older and to lose more weight during the course of treatment. BMI at the start of treatment was not predictive of drug discontinuation. Identification of progressive weight loss is important in order to implement strategies to improve overall drug tolerance.

REFERENCE

M26
GEOGRAPHIC VARIATION IN ANTI-FIBROTIC PRESCRIPTIONS FOR IDIOPATHIC PULMONARY FIBROSIS PERSISTS AND IS NOT FULLY-EXPLAINED BY INDICES OF MULTIPLE DEPRIVATION

AD Redfern, FA Woodhead. Institute for Lung Health, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester, UK

10.1136/thoraxjnl-2017-210983.448

Introduction Idiopathic Pulmonary Fibrosis (IPF) is a progressive, fatal disease. The antifibrotic drugs (AFTs) pirfenidone and nintedanib are disease-modifying medicines for IPF, licensed in the UK and many other countries. Despite evidence of their benefit in improving survival and minimizing disease progression, AFTs are underprescribed in routine clinical practice. Evidence of prescribing in real-world settings is scarce. We aimed to describe prescribing of AFTs in England and to compare prescribing with population-based measures of health and deprivation.

Methods We undertook a retrospective analysis of AFT prescribing for IPF in England for the period 2012–2014. Data were obtained from the Prescription Pricing and Analysis Centre (PPAC) database. Deprivation was assessed using the Index of Multiple Deprivation (IMD) and the OFM bespoke multiple deprivation index.

Results A total of 8,499 patients were prescribed AFT for IPF in England between 2012–2014. The median number of patients prescribed AFT per 100,000 population was 1.18 (IQR 0.67–2.18). There was a significant variation in AFT prescribing between PCGs, with around a fivefold difference. In all, 9% of PCGs did not prescribe any AFT for IPF. There was no significant variation in AFT prescribing by IMD quintile (p=0.26) or OFM (p=0.11). However, AFT prescribing was significantly lower in the most deprived quintiles of IMD (1.01; 95% CI 0.99 to 1.03) and OFM (1.01; 95% CI 0.99 to 1.03).

Conclusions Variability in AFT prescribing in England persists and is not explained by population-based measures of deprivation. The potential for improving AFT prescribing is considerable and may be important in improving outcomes for patients with IPF.
and nintedanib are licensed treatments but are only available at specialised centres. We have previously shown that patients whose local hospital was a prescribing centre (PC) were more likely to be receiving AFDs than those whose local hospital was not a prescribing centre (NPC).

Objectives We set out to test the hypothesis that this indicates differences in ability to travel or to seek specialist care which might be reflected in differences in indices of multiple deprivation (IMD).

Methods We obtained a full list of patients who received AFDs since 2013 and obtained their postcodes from hospital databases. We additionally obtained markers of socio-economic status based on the IMD score obtained from government websites. Data were recorded in January 2016 and July 2017 and compared with non-parametric statistics.

Results The number of patients per 100,000 population in each postcode area started on AFDs increased from a median (range) of 3.04 (0-15.86) in 2016 to 8.81 (1.16-33.87) in 2017 (p=4x10^-6). In both 2016 (p=0.0119) and 2017 (p=0.0089), there were more patients on AFDs per postcode area where the local hospital was a PC compared to a NPC. Looking at the distribution of IMD in 2017, there was a small difference (p=0.057) that did not appear fully to explain the difference in AFD prescriptions between PC and NPC.

Conclusions The NHS constitution requires equality in access to therapy regardless of where the patient lives. Although AFD prescriptions have increased significantly between 2016 and 2017, we have again demonstrated inequality of access to AFDs depending on patient location. These differences do not appear fully explained by differences in indices of multiple deprivation.

M27

EFFECT OF PIRFENIDONE ON BREATHLESSNESS AS MEASURED BY THE UCSD-SOBQ SCORE IN PATIENTS WITH IDIOPATHIC PULMONARY FIBROSIS (IPF) WITH MODERATE LUNG FUNCTION IMPAIRMENT

M Glassberg, M Wijnenbeek, F Gilberg, UI Petzinger, LU Kirchgeasser, C Albera.

1University of Miami Health System, Florida, US; 2Erasmus University Medical Centre, Rotterdam, Netherlands; 3F. Hoffman-La Roche Ltd, Basel, Switzerland; 4Accovion GmbH, Eschborn, Germany; 5University of Turin, Turin, Italy

Introduction Treatment of IPF with pirfenidone slows disease progression as measured by changes in forced vital capacity (FVC), independent of baseline FVC values. In a previous analysis of patients with limited vs more advanced lung function impairment, increases in University of California, San Diego Shortness of Breath Questionnaire (UCSD-SOBQ) scores were more pronounced in patients with Gender Age Physiology index (GAP) stage II/III vs GAP stage I and in patients with baseline FVC <80% vs FVC ≥80%. We examined the effect of pirfenidone on UCSD-SOBQ in these subpopulations.

Methods 1247 patients (NCT01366209) and CAPACITY (NCT00287716; NCT00287729) were randomised to pirfenidone 2403 mg/d or placebo. Patients were stratified by GAP stage I vs stage II/III and by baseline% predicted FVC. The effect of pirfenidone on UCSD-SOBQ score was assessed by continuous and categorical changes from baseline over 12 months, and by multiples of the minimal clinically important difference of 5 points for UCSD-SOBQ.

Results Pirfenidone-treated patients with GAP stage II/III had higher UCSD-SOBQ scores after 12 months than those with GAP stage I (median increase from baseline: 9.4 vs 5.0); similar Results occurred with placebo (12.5 vs 4.3). GAP stage II/III patients treated with pirfenidone had less increase in median UCSD-SOBQ score at 12 months compared with those receiving placebo (9.4 vs 12.3; median difference -3.5, 95% CI -6.2 -0.3; p=0.0161) with the curves diverging after 3 months (figure 1). Evaluation of categorical change for patients with GAP stage II/III demonstrated that pirfenidone reduced the proportion of patients with UCSD-SOBQ score increases of ≥15 points (45.6% vs 38.4%; p=0.0449) and ≥20 points (37.7% vs 28.6%; p=0.0089) at 12 months compared with placebo; increases of ≥5 or ≥10 points were similar between treatment groups. Results in patients with 80% FVC were comparable to GAP stage II/III.

Conclusions In patients with IPF with moderate lung function impairment, pirfenidone reduced the progression of breathlessness compared with placebo. Patients receiving pirfenidone showed less change from baseline in UCSD-SOBQ score and a lower proportion of patients had more pronounced increases in UCSD-SOBQ scores at 12 months.

M28

DEFERRING TREATMENT WITH PIRFENIDONE RESULTS IN LOSS OF LUNG FUNCTION THAT IS NOT RECOVERED BY LATER TREATMENT INITIATION

T Maher, T Jouneau, L Morrison, D Lederer, M Molina-Molina, K-U Kirchgeasser, F Gilberg, A Axmann, U Petzinger, E Bendstrup. Royal Brompton Hospital and Imperial College London, London, UK; 1HôpitalPontchaillou, INSERMUMR 1085, Université de Rennes, 1Rennes, France; 2Department of Medicine, Duke University, Durham, NC, US; 3Columbia University Medical Centre, New York, NY, US; 4University Hospital of Bellvitge, Institut d’Investigacions Biomèdiques de Bellvitge, Barcelona, and Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain; 5F. Hoffmann-La Roche Ltd., Basel, Switzerland; 6Accovion GmbH, Eschborn, Germany; 7Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus, Denmark

Introduction Treatment of idiopathic pulmonary fibrosis (IPF) with pirfenidone slows disease progression as measured by changes in forced vital capacity (FVC). We have previously shown that patients whose local hospital was a prescribing centre (PC) were more likely to be receiving AFDs than those whose local hospital was not a prescribing centre (NPC).

Objectives We set out to test the hypothesis that this indicates differences in ability to travel or to seek specialist care which might be reflected in differences in indices of multiple deprivation (IMD).

Methods We obtained a full list of patients who received AFDs since 2013 and obtained their postcodes from hospital databases. We additionally obtained markers of socio-economic status based on the IMD score obtained from government websites. Data were recorded in January 2016 and July 2017 and compared with non-parametric statistics.

Results The number of patients per 100,000 population in each postcode area started on AFDs increased from a median (range) of 3.04 (0-15.86) in 2016 to 8.81 (1.16-33.87) in 2017 (p=4x10^-6). In both 2016 (p=0.0119) and 2017 (p=0.0089), there were more patients on AFDs per postcode area where the local hospital was a PC compared to a NPC. Looking at the distribution of IMD in 2017, there was a small difference (p=0.057) that did not appear fully to explain the difference in AFD prescriptions between PC and NPC.

Conclusions The NHS constitution requires equality in access to therapy regardless of where the patient lives. Although AFD prescriptions have increased significantly between 2016 and 2017, we have again demonstrated inequality of access to AFDs depending on patient location. These differences do not appear fully explained by differences in indices of multiple deprivation.

Introduction

Idiopathic pulmonary fibrosis (IPF) is characterised by a progressive loss of lung function. Intervention with an anti-fibrotic, such as pirfenidone, as early as possible in the disease course may be the most appropriate strategy to preserve lung capacity. In this analysis, data from the pivotal CAPACITY (004/006; NCT00287716/NCT00287729) trials and subsequent RECAP (012; NCT00662038) rollover trial were used to investigate the impact of deferring pirfenidone treatment on annual decline in lung function (forced vital capacity [FVC]) in patients with IPF.

Methods

The annual rate of lung function (FVC; mL) decline was calculated for all treated patients who completed CAPACITY and RECAP. Weeks 0–120 included all patients randomised in CAPACITY to pirfenidone 2,403 mg/day or placebo. Weeks 72–120 included data for the transition period, when patients either continued pirfenidone or switched to pirfenidone in RECAP. After Week 120, only data for patients in RECAP were included. Patients randomised to pirfenidone in CAPACITY were compared with those who received placebo in CAPACITY before initiating pirfenidone in RECAP.

Results

From Week 0 to 120, the annual rate of lung function decline (FVC) was $-142.0 \text{ mL (n=345)}$ in patients who received pirfenidone in CAPACITY and $-182.3 \text{ mL (n=347)}$ in those who received placebo. During the transition period (Weeks 72–120), these values were $-155.2 \text{ mL (n=236)}$ and $-151.9 \text{ mL (n=249)}$ in patients who continued and switched to pirfenidone, respectively. In RECAP (\geqWeek 120), the annual rate of lung function decline in patients who received pirfenidone in both trials was $-145.3 \text{ mL (n=219)}$ and $-140.9 \text{ mL (n=218)}$ in those who switched from placebo to pirfenidone.

Conclusions

These data show that loss of lung function during CAPACITY was not recovered during RECAP. Therefore, failure to initiate pirfenidone treatment in IPF as early as possible may lead to an irrecoverable loss of lung volume during the period without treatment.

Funding

F. Hoffmann-La Roche, Ltd./Genentech, Inc.

REFERENCE

M29

FVC DECLINE OVER 1 YEAR PREDICTS MORTALITY BUT NOT SUBSEQUENT FVC DECLINE IN PATIENTS WITH IPF

1. Richeldi, 2M Kolb, 3A Azuma, 4W Stansen, 5M Quaresma, 6S Stowasser, 6B Crestani. 1Catholic University of the Sacred Heart, Rome, Italy; 2McMaster University, Hamilton, Ontario, Canada; 3Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan; 4Boehringer Ingelheim Pharma GmbH and Co. KG, Ingelheim am Rhein, Germany; 5Center for interstitial and rare lung diseases, Pneumology, Thoraklinik, University of Heidelberg, and Translational Lung Research Centre Heidelberg, German Centre for Lung Research, Germany; 6Hôpital Bichat, Pneumologie, Paris, France

10.1136/thoraxjnl-2017-210983.451

Introduction

In the INPULSIS trials, nintedanib reduced disease progression by reducing FVC decline vs placebo in patients with IPF. Patients who completed an INPULSIS trial could receive open-label nintedanib in the extension trial INPULSIS-ON.

Aim

To assess the impact of FVC decline in INPULSIS on FVC decline and mortality in INPULSIS-ON.

Methods

Descriptive analysis of the proportions of nintedanib-treated patients who had FVC decline <10% or \geq10% predicted (pred) from baseline to week 52 of INPULSIS and the proportions of patients in these groups who had FVC decline <10% pred, \geq10% pred, or died in the first year of INPULSIS-ON.

Results

430 patients received nintedanib in both INPULSIS and INPULSIS-ON. Of these, 89.1% had FVC decline <10% pred from baseline to week 52 of INPULSIS and the proportions of patients in these groups who had FVC decline <10% pred, \geq10% pred, or died in the first year of INPULSIS-ON.

Conclusions

These data show that loss of lung function during CAPACITY was not recovered during RECAP. Therefore, failure to initiate pirfenidone treatment in IPF as early as possible may lead to an irrecoverable loss of lung volume during the period without treatment.

Funding

F. Hoffmann-La Roche, Ltd./Genentech, Inc.