A NEW QUESTIONNAIRE TO MEASURE QUALITY OF LIFE IN SEVERE ASTHMA (SAQ): PRELIMINARY VALIDATION

R Jones, M Masoli, M Hyland, U Lanario, Peninsula School of Medicine and Dentistry, University of Plymouth, Plymouth, UK; Plymouth Hospital’s NHS Trust, Plymouth, UK; School of Psychology, University of Plymouth, Plymouth, UK

Abstract P196 Figure 1

There was no significant difference in GORD (p=0.305), rhinosinus disease (p=0.388) or oral corticosteroid requirement (p=0.6896). Asthma Control Questionnaire (ACQ) was significantly higher in OSA 3.3±1.3 compared to the no-OSA group 2.8±1.3, p=0.022 (Apnoea Hypoxia Index (AHI) ≥10)

Conclusions Preliminary Results indicate that the SAQ may be a more valid measure of quality of life in severe asthma than existing questionnaires. The SAQ maps onto a pre-existing health economic measure, the EQ-5D. Furthermore the SAQ has greater sensitivity to differences in OCS dose compared to the AQLQ. The SAQ will be assessed further in a larger validation study.
managed their own asthma also significantly improved following the intervention (pre-intervention mean 4.1 [SD 2.5] versus post-intervention mean 8.9 [SD 1.1]; paired t-test <0.001; n=24). Total number of hospital admissions and emergency department attendances did not decrease compared to the previous year’s data during this period (308 in 2016 versus 352 in 2017).

Conclusion Results to-date show that this integrated and responsive service for asthma exacerbation is well utilised and demonstrates a significant improvement in patient reported asthma control and confidence in self-managing their condition.

P198 FENO AND BLOOD EOSINOPHILS AS BIOMARKERS IN PREDICTING ASTHMA EXACERBATIONS

1S Rastogi, 2S Bosnic-Anticevich, 3P Averyd, 4S Roche, 5S Halpin, 6S Bjømmer, 7O S Usmara, 8G Brusell, 9W Wan Yau Ming, 10S Halim, 11G Gopalan, 11D Price. AstraZeneca, Gaithersburg, US; 2Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia; 3University of Oxford, Oxford, UK; 4University Paris Descartes, Paris, France; 5Royal Devon and Exeter Hospital, Exeter, UK; 6Lund University, Lund, Sweden; 7Imperial College London, London, UK; 8University of Ghent, Ghent, Belgium; 9Observational and Pragmatic Research Institute, Singapore; 10AstraZeneca, London, UK; 11University of Aberdeen, Aberdeen, UK

Introduction and Objectives Blood eosinophil counts (Bl-Eos) and fractional exhaled nitric oxide concentrations (FeNO) are established biomarkers in asthma. While patients with raised Bl-Eos are at increased risk of asthma exacerbations, it is unclear whether raised FeNO is associated with further increased risk. We sought to determine if raised Bl-Eos combined with raised FeNO was associated with increased frequency of asthma exacerbations.

Methods This was a cross-sectional study of data from the Optimum Patient Care Research Database. Patients included were aged 18–80 years with ≥1 year of continuous electronic health records prior to their most recent FeNO readings, had evidence of asthma, had received ≥1 inhaled corticosteroid prescription, and had Bl-Eos recorded within 5 years of FeNO reading. Cohorts were determined by: Bl-Eos raised (≥0.25×10⁹/L, a cutoff representing the sample mean) and not raised (<0.25×10⁹/L) and, FeNO raised (≥35 ppb) and not raised (<35 ppb). Patients were directly matched on age, sex, and smoking status. Patients with (i) raised Bl-Eos and not raised FeNO, (ii) raised FeNO and not raised Bl-Eos, or (iii) both biomarkers raised were compared with reference patients (neither biomarker raised). Comparison of exacerbations (evidenced by acute oral corticosteroid prescription or unplanned asthma-related hospital attendance) was conducted using conditional Poisson regression.

Results The unmatched study population consisted of 610 patients (mean age 52, 38% male, 46% non-smokers). With 1:1 matching, both the (i) raised Bl-Eos and not raised FeNO cohort (n=186) and the (ii) raised FeNO and not raised Bl-Eos cohort (n=98) demonstrated a trend toward greater exacerbation rates (unadjusted rate ratio: 1.41 [95% CI 0.91, 2.19] and 1.35 [95% CI 0.99 1.84], respectively) vs. reference group. Importantly, however, when both biomarkers were raised (n=53), a significantly greater exacerbation rate was observed (1.72 [95% CI 1.00, 2.93]).

Conclusion The combination of raised FeNO and raised Bl-Eos was associated with a greater exacerbation rate compared with neither biomarker raised. FeNO and Bl-Eos are simple primary care measurements that could reliably predict exacerbation risk for asthma patients. This should be confirmed prospectively in larger populations.

Please refer to page A258 for declarations of interest in relation to abstract P198.

P199 ADVERSE EVENTS PROFILE OF ORAL CORTICOSTEROIDS AMONG ASTHMA PATIENTS IN THE UK

1M Bloechliger, 2D Rainau, 3Sc Chang, 4K Kubisch, 5L Heaney, 6S Jick, 7Cr Meier. 1Basel Pharmacoepidemiology Unit, Basel, Switzerland; 2Genentech, Inc., South San Francisco, CA, US; 3F Hoffmann-La Roche, Basel, Switzerland; 4Wellcome-Wilson Institute for Experimental Medicine, Queens University Belfast, Belfast, UK; 5Boston Collaborative Drug Surveillance Program, Boston University School of Public Health, Lexington, MA, US

Background and Objectives Previous studies have linked oral corticosteroid use in asthma patients to various adverse events. This study aimed to assess in more depth than has previously been done the toxicity profile of oral prednisolone among adult asthma patients.

Methods Using data from the UK-based Clinical Practice Research Datalink, we conducted a series of cohort studies, each with a nested case-control analysis, to quantify the risk of 11 different potential corticosteroid-related adverse events.

Results Incidence rates per 1000 person-years of potential corticosteroid-related adverse events in patients with new current use of oral prednisolone ranged from 1.4 (95% confidence interval [CI], 1.0–1.8) for peptic ulcer to 78.0 (95% CI, 74.8–81.2) for severe infections. After adjusting for confounding, current oral prednisolone use was most strongly associated with an increased risk of severe infection (odds ratio [OR] 2.16; 95% CI, 2.05–2.27) compared with non-use of prednisolone. There were smaller elevated risks of peptic ulcer (OR 1.47; 95% CI, 1.12–1.92), affective disorders (OR 1.47; 95% CI, 1.32–1.63), herpes zoster (OR 1.32; 95% CI 1.19–1.48), cardiovascular events (OR 1.33; 95% CI 1.18–1.49), diabetes mellitus type 2 (OR 1.35; 95% CI 1.22–1.49), bone related conditions (OR 1.27; 95% CI 1.17–1.37), and cataract at higher cumulative doses (cumulative dose ≥2000 mg: OR 1.43; 95% CI 1.17–1.73), compared with non-use of prednisolone. We did not observe an association between current oral prednisolone use and glaucoma, chronic kidney disease, or hypertension. Past use of oral prednisolone was not associated with any of the study outcomes. We observed possible dose-response relationships between current oral prednisolone use and the risk of cardiovascular events, affective disorders, bone-related conditions, severe infections, diabetes mellitus type 2, and cataract, but not the other investigated outcomes.

Conclusion Oral prednisolone use is associated with an increased risk of infections, gastrointestinal, neuropsychiatric, ocular, cardiovascular, metabolic, and bone-related complications among adult asthma patients. The risk is associated with current but not past use of oral prednisolone use, and for some outcomes with the prescribed dose of oral prednisolone.

1A Manfrin, 2M Tinelli. 1Medway School of Pharmacy, Universities of Greenwich and Kent at Medway, Anson Building, Chatham, UK; 2LSE Health and Social Care, The London School of Economics and Political Science, London, UK

10.1136/thoraxjnl-2017-210983.342

Introduction and Objectives Asthma accounts for an economic loss of €72 billion annually in the 28 countries of the European Union with a monetised value of DALYs cost of €38 billion. One of the key priorities in asthma management is achieving asthma control. It is crucial to understand whether providing a minimally clinical important difference (MID) of the asthma control test (ACT) score can bring better clinical, utility and economic outcomes.

Aim To test whether the A.B.O.V.E. ASTHMA (Achieving-Better-Outcomes-and-Value-for-Everybody-in-Asthma) tool works in terms of securing the MID in ACT and, in doing so, we can provide positive outcomes for patients, payers, providers and policy makers.

Methods Using the data obtained from the Italian Medicines Use Review (I-MUR) cluster randomised controlled trial (C-RCT; 2014–2015) involving 1263 asthma patients and 283 pharmacists in Italy, we tested whether A.B.O.V.E. ASTHMA was able to (1) link a clinical outcome (ACT score) to economic and utility dimensions; (2) secure a MID improvement in ACT and the outcomes attached in terms of cost savings.

Abstract P200 Table 1 Annual cost savings and utility gains when securing clinical target in asthma control (MID) with A.B.O.V.E. ASTHMA intervention

<table>
<thead>
<tr>
<th>Possible shifts*</th>
<th>Current scenario (ACT)</th>
<th>Target scenario (ACT)</th>
<th>% of success</th>
<th>Cost savings NHS (euros)</th>
<th>Utility gains (years in full health saved)</th>
<th>% of success</th>
<th>Cost savings NHS (euros)</th>
<th>Utility gains (years in full health saved)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 RED to RED</td>
<td>5–10</td>
<td>8–13</td>
<td>2.6</td>
<td>0</td>
<td>0</td>
<td>1.6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 RED to YELLOW</td>
<td>15–16</td>
<td>14–17</td>
<td>5.4</td>
<td>1 00 132 (CI 75,099; 130,172)</td>
<td>4.9</td>
<td>5.5</td>
<td>1 02 408 (CI 76,806; 133,130)</td>
<td>4.96 (CI 4.91; 5.00)</td>
</tr>
<tr>
<td>3 YELLOW to YELLOW</td>
<td>15–16</td>
<td>18–19</td>
<td>2.2</td>
<td>0</td>
<td>0</td>
<td>0.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4 YELLOW to GREEN</td>
<td>18–19</td>
<td>20–21</td>
<td>10.5</td>
<td>2 45 880 (CI 184,410; 319,644)</td>
<td>30.56 (CI 30.29; 30.83)</td>
<td>13.8</td>
<td>3 23 075 (CI 242,306; 419,908)</td>
<td>40.16 (CI 39.80; 40.52)</td>
</tr>
<tr>
<td>5 GREEN to GREEN</td>
<td>20–21</td>
<td>≥23</td>
<td>5.3</td>
<td>0</td>
<td>0</td>
<td>6.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total (1+2+3+4+5)</td>
<td></td>
<td></td>
<td>31.07</td>
<td>3 46 012 (CI 259,509; 449,816)</td>
<td>35.42 (CI 35.11; 35.73)</td>
<td>27.82</td>
<td>4 25 483 (CI 319,112; 553,128)</td>
<td>45.12 (CI 44.72; 45.52)</td>
</tr>
</tbody>
</table>

The calculation of the cost-saving for the NHS was estimated for a population of 1,000 asthma patients.