Methods We used immunohistochemistry (IHC) and immunofluorescent (IF) co-staining approaches involving cell-specific markers αSMA (myofibroblast), CK7 (epithelium) and CD68 (infiltrating cells e.g., macrophages) in formalin fixed paraffin embedded (FFPE) lung tissues from IPF patients (n=3).

Results Using both immunoperoxidase and immunofluorescence co-staining, we have demonstrated PKM2 expression in both the CK7 positive bronchial epithelium, as well as the CK7 positive epithelium overlying fibrotic foci in lungs from IPF patients. PKM2 was also co-localised with CD68 positive infiltrating macrophage populations. Occasional examples of PKM2 positive staining were observed in αSMA-positive myofibroblasts.

Conclusions PKM2 expression was observed in epithelium and infiltrating macrophages, thought to be critically involved in the pathology of IPF. These data suggest that these cells may rely on aerobic glycolysis to provide for their biosynthetic requirements, and provide a foundation for studies to investigate the role of glycolytic reprogramming in lung injury and fibrosis.

Poster sessions

PS1 LUNG EPITHELIAL CELL INHIBITION OF CYTOKINE PRODUCTION BY PERIPHERAL BLOOD MONONUCLEAR CELLS AND LUNG LYMPHOCYTES

S Layzell, A Southern, ID Pavord, TJ Powell. Respiratory Medicine Unit and NHRI Oxford Biomedical Research Centre Respiratory Theme, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.

10.1136/thoraxjnl-2017-210983.193

Introduction Type 2 cytokines such as IL-5, IL-13 and IL-4 produced by primed type 2 T cells have been shown to be important in the pathogenesis of eosinophilic airway inflammation. Factors regulating the state of activation of these cells are incompletely understood. We and others have shown that release of IL-13 by stimulated T cells can be inhibited by epithelial cells. This study used a PBMC based bulk culture system to: 1) determine whether production of other type-2 cytokines is inhibited by co-culture with epithelial cells; 2) compare inhibition of activated PBMC and human lung lymphocytes and 3) investigate whether specific soluble mediators modified inhibition of IL-13 release. PBMC isolated from blood and lymphocytes isolated from lung tissue were cultured with IL-2 for five days in the absence and presence of A549 and BEAS2 epithelial cells. The cytokines IL-13, IL-5, IL-9 and TNFα were measured in the supernatant of these cells. Similar co-culture experiments were performed in the presence of different inhibitors or blocking cytokine antibodies.

Results Production of all cytokines measured were reduced in the presence of epithelial cells: IL-13 shown as mean pg/10⁶ cells/+/-SD in 200 U/mL IL-2) PBMC: 1184+/-24,+A549 12 +/-1 or lung cells 795+/-138,+A549 50 +/-2. PBMC and lung cells were inhibited to a similar degree although, importantly, lung cells produced more IL-9 and less TNFα than a comparable number of PBMC. We found that adding inhibitors to IL-10, TGF-β, Aryl Hydrocarbon Receptor (AHR blocked with CH-223191), prostaglandins (indomethacin) and nitric oxide (NMMA) did not alter the A549 mediated regulation of IL-13 release by the PBMC or lung cells.

Conclusions The inhibition of cytokine release by PBMC and lung cells in the presence of epithelial cells could indicate generalised regulation of inflammatory cytokine release. Blocking of IL-10, TGF-β, AHR, prostaglandins and nitric oxide was not able to reduce the regulation of the cytokine release but more specific inhibitors or further titration may be required. The characterisation of cells from lung tissue and the regulation of these by epithelial cells could further elucidate possible ways of regulating and reducing cellular inflammatory responses in asthma.

PS2 EXPLORING THE INTERACTION BETWEEN HIV-1 GP120, BRONCHIAL AIRWAY EPITHELIAL CELLS AND MACROPHAGES

B Talbot, CA Stokes, PI Cellini, AM Condliffe. Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.

10.1136/thoraxjnl-2017-210983.194

Rationale and Hypothesis HIV-1-seropositive individuals receiving highly active antiretroviral therapy (HAART) have an increased incidence of chronic obstructive pulmonary disease (COPD), independent of smoking history. Although HIV-1 infection is associated with impaired redox homeostasis and increased pro-inflammatory cytokine expression in the lungs despite HAART, the mechanisms driving HIV-1-associated COPD are poorly understood. Free HIV-1 envelope glycoprotein gp120 is detectable in bronchoalveolar lavage fluid from HAART-treated individuals. gp120 displays affinity (tropism) for either CCR5 or CXCR4 chemokine receptors, and has been implicated as a mediator of inflammation and oxidative stress in various HIV-1-associated disease processes. We hypothesised that gp120 directly induces bronchial epithelial cell oxidative stress, and drives airway inflammation indirectly via alveolar macrophages, a response which is augmented following secondary exposure to pro-inflammatory stimuli such as bacterial pathogens.

Objectives To explore the mechanisms and consequences of gp120 interactions with bronchial epithelial cells and macrophages.

Methods An immortalised bronchial epithelial cell line (BEAS-2B), primary bronchial epithelial cells (PBECs) or monocyte-derived macrophages (MDMs) from healthy volunteers were treated with recombinant gp120 (CCR5- or CXCR4-tropic, 100 ng/mL) for 24-48 hour. BEAS-2B were primed (or not) with IL-1β. MDMs were co-cultured with confluent BEAS-2B cells at a ratio of 1:5 in the presence or absence of LPS (100 ng/ml). Cytokine outputs were quantified by ELISA, and cellular reactive oxygen species (ROS) production assessed by confocal microscopy using CellROX or MitoSOX reagents.

Findings Picomolar concentrations of CXCR4- but not CCR5-tropic gp120 induced CXCL8 release from IL-1β-primed BEAS-2B monocytes and upregulated cellular ROS production in both BEAS-2Bs and PBECs, consistent with expression of CXCR4 but not CCR5 on these cells. gp120 stimulation of BEAS-2B/MDM co-cultures caused no detectable changes in ROS production assessed by confocal microscopy using CellROX or MitoSOX reagents.
Conclusion HIV-1 gp120 influences key airway cell interactions to disturb redox homeostasis and inflammatory responses at concentrations equivalent to those found in the lungs of individuals receiving long-term HAART.

P3

PHOSPHOINOSITIDE-3 KINASE AND MEK INHIBITION PREVENTS UPTAKE OF BACTERIA BY AIRWAY EPITHELIAL CELLS

EC Duffett, PS Fenwick, PJ Barnes, LE Donnelly. Imperial College London, London, UK

10.1136/thoraxjnl-2017-210983.195

Introduction Bacteria are associated with COPD exacerbations with Haemophilus influenzae, and Streptococcus pneumoniae being predominant. Airway epithelium can protect pathogens from host defences and antibiotic treatment by internalisation. The mechanisms of this are unclear but may involve phosphoinositide-3- kinase (PI3K), p38, and ERK pathways. This requires many primary cells and therefore a validated cell line model would be of benefit. Therefore, we compared uptake of pathogenic bacteria by airway epithelial cells from non-smokers and COPD patients with A549 and BEAS-2B cell lines and the effects of pathway inhibitors were examined.

Methods Non-smoker (n=7) and COPD (n=8) primary airway epithelial cells internalised respiratory bacteria spp. (H. influenzae, S. pneumoniae, or E. coli) for up to 72 hours and uptake fluorimetrically. Confocal microscopy was used to confirm internalisation of bacteria. CXCL8 release was measured using ELISA. Effects of pathway inhibitors were determined by pre-treating cells with increasing concentrations of LY294002 (PI3K inhibitor), VX745 (p38 inhibitor), or PD98059 (ERK pathway inhibitor). Cell viability was assessed by MTT assay.

Results Primary airway epithelial cells internalised respiratory bacteria spp. but not E. coli, in a time-dependent manner, with COPD cells internalising more H. influenzae but not S. pneumoniae compared to non-smokers at 48 hours (H. influenzae Non-smoker: 0.97±0.23 vs. COPD: 2.49±0.7 RFU χ 10³, p<0.05) and 72 hours (H. influenzae Non-smoker: 1.44±0.35 vs. COPD: 3.01±2.2 RFU χ 10³, p<0.05). A549 cells engulfed more bacteria than primary cells but the responses of BEAS-2B cells were similar to COPD cells and were used for subsequent experiments. Uptake was inhibited by LY294002 or PD98059 and LY294002 or PD98059 inhibited CXCL8 release (Table 1). None of the treatments affected cell viability.

Conclusion COPD airway epithelial cells engulf more H. influenzae than cells from non-smokers and this can be modelled by BEAS-2B cells. Uptake appears to require PI3K and ERK pathways but not p38 although, p38 is required for cytokine release. These data suggest that PI3K or MEK inhibitors in combination with antibiotics might be a good therapeutic strategy to treat bacterial exacerbations and colonisation in COPD.

P4

EOSINOPHIL MIGRATION IS ENHANCED TOWARDS IL-5 AND EOTAXIN IN COPD

10.1136/thoraxjnl-2017-210983.196

Introduction Eosinophilic COPD is an important inflammatory phenotype, but the mechanism is unknown. In this study we examine the migration of eosinophils in different inflammatory COPD phenotypes towards IL-5 and eotaxin which was uneulcuated.

Methods Whole blood from 4 eosinophilic COPD patients, 4 non-eosinophilic COPD patients and 6 healthy controls was collected, with eosinophils isolated by ficoll-paque and dextran. Methods Eosinophils were assessed for chemotactic ability. Briefly, eosinophils re-suspended at 1 × 10⁵ cells/ml were placed on a 3 μm pore membrane above solutions of IL-5 and eotaxin (50 ng/ml and 10 ng/ml respectively for one hour). Cells which passed through the membrane were treated with Cell-Titer-Glo solution to allow their detection by plate reader. Eosinophilic COPD was defined as patients with a peripheral blood eosinophil count of ≥2% of white blood cells.

Results Eosinophils from eosinophilic COPD patients showed significantly greater migration than both healthy controls towards IL-5 (median: 7021 cells, IQR: 6098–10 013 vs median: 2288 cells, IQR: 1389–2702, p=0.0093) and non-eosinophilic COPD patients (median: 3219 cells, IQR: 2488–3785, p=0.0286). Eosinophils from eosinophilic and non-eosinophilic COPD patients (median: 5363 cells, IQR: 4101–5420 and median: 3683, IQR: 3091–4179 respectively) showed significantly greater migration towards eotaxin than healthy controls.

Abstract P54 Figure 1 Eosinophil migration towards IL-5 and eotaxin.