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and 25 images/s for monitoring of cardiac related physiology. Even very high frequency 

events such as high frequency oscillatory ventilation can be monitored by modern EIT 

devices (2). Further discussion of scan rates and filtering is in EOS 3. 

 

 

 

Figure E2.2. Example of EIT images acquired at a scan rate of 13 images/s (data from a 

mechanically ventilated pig with experimental lung injury (3) acquired with the Goe-MF II 

device (CareFusion, Höchberg, Germany)). EIT images frames (numbered) show subsequent 

frames from left to right during a single respiratory cycle. 

 

EIT tissue sensitivity 

 

EIT is sensitive to changes in electrical conductivity properties of tissue at the stimulation 

frequency. Conductivity is a bulk property of materials, and is measured in Siemens per 

meter (S/m) with a range of 0.042 (inflated lung), 0.11 (deflated lung), 0.48 (heart) and 

0.60 (blood) (4, 5). Resistivity (in Ω·m) is the inverse of conductivity. At low frequencies, 

electrical current flows primarily through conductive pathways (in the body, regions of high 

ionic conductivity). As the frequency increases, oscillating currents (also called displacement 

currents) are able to travel across otherwise insulating barriers such as cell membranes. At a 

specific current stimulation frequency the conduction properties of tissue are described by 

the admittivity (S/m) and its inverse, the impedivity (Ω·m). To date EIT systems have 

operated at relatively low frequencies (≤250 kHz), where current flow in tissue is mostly 

conductive, and the resistivity and impedivity are roughly equal (which explains how these 

terms are sometimes conflated). The measurement of tissue electrical properties at multiple 

higher frequencies is called electrical impedance spectroscopy and serves a role in 

characterizing properties of tissue samples (6-9). This method does not provide images, and 

is typically not useful for real-time imaging, since its acquisition rates are relatively low 

compared to EIT. 
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The conductivity properties of most tissues are relatively well known ex vivo (e.g. 

(10)). The main factor in tissue is the fluid content, such that body fluids are conductive and 

gases resistive. Since time-difference EIT (tdEIT) is a dynamic modality, it is sensitive to 

changes in conductivity rather than the absolute conductivity level. Physiological changes 

occur primarily due to the movements of body fluids (e.g. blood in blood vessels) and gases 

(e.g. air in the lungs). For example, as the lungs inflate, electrical current must pass through 

the parenchyma which is more widely spaced by the incoming air. Unfortunately, to our 

knowledge, there are no good in vivo measurements of the lung conductivity as a function of 

inflation; however, most models assume a linear relationship between resistivity and lung air 

content (11). Changes in fluid content may be pulsatile (at the cardiac frequency) or more 

slowly, due to intravascular or extravascular fluid accumulation. 

The impedance values measured by EIT are very sensitive to the shape and 

movement. Thus, the EIT signal in the heart region is a combination of the effect of blood 

volume changes in the heart chambers, as well as the movement of the heart in the thoracic 

cavity (12). EIT signals are similarly sensitive to changes in electrode position (13), body 

posture (14-20), and electrode contact impedance (21, 22). 

 

EIT position sensitivity 

 

EIT is most sensitive to conductivity changes in the electrode plane, and has decreasing 

sensitivity to off-plane effects. Note, however, that EIT does not provide a "slice" such as 

from CT or MRI images. Instead, there is a gradual decrease in sensitivity with off-plane 

distance. The decrease in sensitivity depends on the distance from the body surface. Close to 

the skin, the off-plane sensitivity is low, while for conductivity changes near the thorax 

centre, sensitivity is roughly half the chest width. Figure E2.3 explores this effect. Using a 

finite element model (FEM), objects at different positions within the electrode plane are 

simulated to move up- and downwards and the sensitivity calculated. 
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Figure E2.3. Frontal plane showing the relative vertical sensitivity of EIT measurements as 

a function of the position above and below the electrode plane. Color intensity (black = 0) 

corresponds to sensitivity. Contour lines indicate regions of equal sensitivity. From the 

electrode plane lines indicate 95%, 90%, 75%, 50% and 25% sensitivity. Data were 

calculated from a finite element mesh of the human thorax with an adjacent stimulation and 

measurement pattern. In each vertical slice, sensitivity is normalized to its value on the 

electrode plane. 

 

EIT image reconstruction 

 

Using the measured voltages, the process of generating an image is called "image 

reconstruction". Typically, an image of the 2D slice through the electrode plane is 

reconstructed. So far, the main image reconstruction framework used is tdEIT, used in all 

clinical and the vast majority of experimental studies. tdEIT reconstructs an image of the 

change in tissue properties between a baseline (or reference) measurement frame (Vref) and 

the measurement frame at the current time (Vt). Vref is chosen to represent a physiologically 
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stable or relevant instant (see below). Since the meaning of an EIT image depends so 

centrally on the Vref chosen, it is essential to describe its choice when reporting results. 

 

Alternative image reconstruction frameworks 

While all clinical results to date have been reconstructed using tdEIT, there are two other 

frameworks for EIT image reconstruction which are active areas of research, and may see 

experimental use in the near future, but are currently insufficiently robust for chest EIT: 

 frequency-difference EIT (fdEIT), which is sensitive to the difference in tissue properties 

between stimulation frequencies. fdEIT uses special EIT hardware capable of stimulating 

the body with electric current at two or more frequencies. Since the electrical 

conductivity of tissues vary with frequencies (current may travel across cell membranes 

rather than around it), the multifrequency measurements reflect these differences (23, 

24). fdEIT uses the similar reconstruction algorithms to tdEIT, but images represent the 

difference in tissue properties between frequencies rather than between Vref and the 

current time. fdEIT has considerable promise, but has seen relatively less experimental 

evaluation. 

 absolute imaging or absolute EIT (aEIT) calculates an image of the electrical tissue 

properties at a given time. Thus it does not require a Vref, since each image represents 

the tissue properties at the time of the measurement. aEIT is routine in the analogous 

geophysical method; however, chest EIT presents some key challenges which have not 

been satisfactorily overcome by current reconstruction algorithms. First, the regions of 

interest (lungs) are relatively deep compared to the electrode spacing, and thus exhibit 

relatively low sensitivity. Next, the electrode contact and placement in chest EIT are 

subject to uncertainties due to sweat, contact quality, position inaccuracies and 

movement due to breathing and posture change. Given these challenges, aEIT has not 

yet seen significant clinical or experimental use. 

 

Formulation of EIT image reconstruction 

 

Time-difference EIT imaging 

tdEIT imaging calculates an image of the impedance changes between two points in time, 

and is the most widespread and robust mode of image reconstruction. Since many 

physiological phenomena like lung ventilation and perfusion are periodic, their time-

dependent changes can thus be determined by tdEIT. 

tdEIT reconstruction may be understood as calculating an inverse sensitivity function. 

Given a tissue properties Pt at time t and properties Pref during the baseline measurement, 



7 
 

then difference EIT is concerned with the change in tissue properties ΔP. During these times, 

corresponding measurements Mt and Mref are made, from which a change in measurements 

ΔM is calculated (some reconstruction algorithms normalize this value). The sensitivity of the 

EIT system, S (also called the Jacobian in the literature), relates 

ΔM = S ΔP 

where the matrix S describes how some EIT measurements are more sensitive to changes in 

some image regions than others. In order to reconstruct an EIT image, we want to calculate 

ΔP from ΔM, using a reconstruction matrix R such that 

ΔP = R ΔM. 

Here, R is a pseudo-inverse of S. Because of the low sensitivity of the diffusive propagation 

of electrical current, EIT is an inverse problem and S is non-invertible. Instead, various 

reconstruction algorithms calculate an approximate inverse; however, reconstruction 

algorithms are required to choose a compromise between image features such as resolution 

and the ability to suppress noise. 

Thus, tdEIT calculates an estimate of the change in tissue properties 

ΔP = Pt − Pref 

between the current and the baseline frame. Correct interpretation of these images depends 

on the definition of the baseline frame. 

Development of new algorithms is an active field in EIT research with advances in 

image quality achieved by using, e.g. a-priori anatomical information. For an introduction to 

these algorithm developments, see (25-27). 

 

Frequency- vs. time-difference imaging 

fdEIT imaging calculates an image of the change in tissue properties between measurements 

made at the same time, but at two different electrical stimulation frequencies. 

Mathematically, fdEIT and tdEIT are formulated similarly, except that 

ΔP = Pa − Pb, 

ΔM = Ma − Mb 

where a and b represent the two stimulation frequencies. Voltages are normally scaled and 

normalized in practice. fdEIT systems can be constructed to make the electrical 

measurements at exactly the same times, or in rapid succession. The frequencies may be 

chosen such that an electrical dispersion occurs between them. For example, at the higher 

frequency, current may pass through cell walls and through the cells, while this may not 

occur at the lower frequency. fdEIT images can thus be interpreted as an image of the 

distribution of tissue types whose electrical properties change most between the frequencies. 
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Absolute vs. time-difference imaging 

aEIT seeks to calculate an image of the actual conductivity distribution within a body based 

on a single set of measurements. aEIT thus does not require a baseline measurement frame. 

Several groups are actively working on aEIT reconstruction algorithms, but it is not 

sufficiently robust for experimental or clinical use. aEIT approaches are challenging in 

medical applications because: first, EIT is highly sensitive to exact knowledge of the 

boundary shape and electrode position, which is not easily available on the chest (which 

moves with breathing and posture change) (28). Also, the higher electrical simulation 

frequencies used in medical EIT are more susceptible to various types of electronic 

inaccuracies. Additionally, aEIT is inherently non-linear, and its solutions require far more 

computation than those of linear tdEIT. 

 

Image reconstruction requirements 

As indicated the mathematics of developing an EIT reconstruction requires performing 

compromises in the selection of a pseudo-inverse. In order to select between the many 

proposed algorithms, work has been done to identify figures of merit to evaluate algorithm 

performance (25, 29, 30). Such work allows selection of appropriate image reconstruction to 

best match an application requirement. 

Based on the consensus reported in (25), Figure E2.4 illustrates the developed figures of 

merit; an ideal reconstruction algorithm should exhibit (in order of importance): 

● uniform amplitude response (i.e. a small contrast of given size should result in the same 

average image amplitude at any position in the imaging plane) 

● small and uniform position error (i.e. a small contrast should be reconstructed in the 

correct position) 

● high and uniform resolution (i.e. a small contrast should be reconstructed as a small 

region, in order to allow distinguishing of nearby changes; however, resolution should 

be uniform to avoid misinterpretation of contrasts in different regions) 

● small ringing artifacts (where "ringing" means image regions with a change inverse to 

the underlying tissue properties) 

● low noise amplification (i.e. the effect of electronic noise in measurements should be 

minimized in the reconstructed images) 

● low shape deformation (i.e. the shape of regions should be preserved − except for 

blurring) 

● small sensitivity to electrode and boundary movement. 
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Specifically, it is limited by the use of an inadequate, 2D sensitivity model. From the point of 

view of interpretation, SBP can display streak-like artefacts, which point toward the 

boundary. Another limitation is the assumption of a circular geometry for the electrodes and 

the body. Nonetheless, in spite of these limitations, SBP works surprisingly well (30) which 

allows the findings of a great number of EIT studies to be considered valid.   

Next, (Figure E2.5, top right) is the GREIT algorithm (25) developed by a consensus 

group of EIT experts. GREIT is based on a mathematical optimization of reconstructed 

images against a set of defined figure of merit parameters. 

Next, (Figure E2.5, bottom left) is a regularized linear Gauss-Newton (GN) 

reconstruction. The image is calculated to match the measured data and a "regularization" 

(or smoothness) constraint. The choice of regularization constraint is a rich research area; 

GN algorithms allow a trade-off between noise immunity, image resolution, and fidelity to 

various image shape constraints (34, 35). 

Last, (Figure E2.5, bottom right) is an example of a non-linear tdEIT algorithm. This 

specific image uses a Total Variation (TV) constraint (36) which enhances edges between 

regions in the image. TV approaches do not show the blur inherent with linear algorithms, 

but have been criticised as showing the appearance of greater resolution than is actually 

available from the data (36). 

 

Comparing image reconstruction algorithms 

 

Each EIT image reconstruction algorithms is best understood as a framework with many 

"ingredients". Each ingredient can be varied, and will have an effect on the accuracy and 

reliability of the calculated images. In the following subsections, we consider the effects of 

four algorithm parameters: shape, orientation, background, and noise performance. 
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Figure E2.5. Examples of image reconstruction algorithms applied to an identical EIT data 

set (3). BP, backprojection; GREIT, Graz consensus; GN, Gauss-Newton; TV, Total Variation. 

 

Image reconstruction shape 

The earliest EIT images assumed that electrodes were placed on a circular plane on a 

cylindrical body. These round images were obtained using the so-far most widespread image 

reconstruction procedure, SBP. The computational advances in the 1990s made it relatively 

straightforward to model the contour of the anatomical form of the chest. Figure E2.6 

illustrates the effect of the choice of anatomical shape; an image of tidal breathing is 

reconstructed on four different models. Images illustrate that the ability of EIT to separate 

the lung regions is compromised when the model is clearly wrong (ellipse and adult human). 

Undoubtedly, the best selection is of a model shape which exactly matches the 

subject. However, in many cases, this is not available, because a scan of the subject has not 

been performed, and also because thorax shape changes with posture. In these cases the 

best shape match should be chosen. A study of the required accuracy of shape matching 
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(37) suggested that an area mismatch of less than 4% corresponded to accurate 

reconstructed images. 

 

Figure E2.6. Algorithm shapes. EIT data obtained from a lung-healthy mechanically 

ventilated piglet (3) representing tidal ventilation (end-inspiration − end-expiration) were 

reconstructed using the GREIT algorithm with various assumed thorax shapes. 1: Cylindrical 

thorax (top left) 2: Elliptical thorax (top right) 3: Porcine shape thorax (Generic) (bottom 

left) 4: Adult human shape thorax (bottom right). The porcine shape was not specifically 

adapted to the thorax shape of the specific animal. Note the relative deformations of the 

reconstructed form. 

 

Image reconstruction noise performance 

EIT algorithms implicitly make assumptions about the level of random noise (interference) in 

the raw data. When the noise level is assumed to be high, an algorithm will smooth (or blur) 

the image to supress such noise. However, if data have low levels of noise, it is appropriate 

to let the algorithm reduce blurring which allows better spatial separation of image regions. 

One common way to measure the assumed noise level of the algorithm is using the Noise 
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Figure parameter (34). In several papers, the value of a parameter or "hyperparameter" is 

adjusted to achieve a similar effect. Using the porcine shape Figure E2.7 shows the same 

data as in Figure E2.6 reconstructed with the GREIT algorithm with different levels of 

assumed noise. 

 

Figure E2.7. Smoothing and noise suppression in image reconstruction. EIT data obtained 

from a lung-healthy mechanically ventilated piglet (3) representing tidal ventilation (end-

inspiration − end-expiration) were reconstructed using the GREIT algorithm with various 

assumed noise levels. Images are shown corresponding to an algorithm NF (Noise Figure) of 

0.25, 0.5, 1.0 and 2.0. At higher NF values, there is reduced spatial blurring and regions 

become more separate. The top right image is the same as the one shown in Figure E2.6. 

 

Image reconstruction background 

As indicated, tdEIT algorithms reconstruct a change in impedance distribution, between a 

measurement, Mt and a baseline measurement, Mref. Reconstruction then uses a sensitivity 

matrix, S, calculated at the assumed conditions during Mref. The assumed impedance 

distribution at Mref, is typically called the "background" distribution. Almost all tdEIT 

algorithms have made the simplest assumption, that the background is homogeneous; 

however, for the thorax, this assumption is clearly false. Some recent algorithm work 
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considers non-uniform background conductivities. In these images, the contrast in the lung 

region is enhanced because it accounts for the inherent lower sensitivity in low-conductivity 

lungs. Figure E2.8 shows images of tidal breathing with different values of the assumed 

background conductivity of the lungs with respect to the average of other thoracic tissues. 

 

Figure E2.8. Effect of image reconstruction background distribution. EIT data obtained from 

a lung-healthy mechanically ventilated piglet (3) representing tidal ventilation (end-

inspiration − end-expiration) were reconstructed using the GREIT algorithm with models of 

the lung region conductivity with respect to the average of other thoracic tissues. 

 

Pixel vs. finite element grid 

EIT images have typically been represented in two ways, as a pixel grid or on a triangular 

representation (Figure E2.9). A representation on a pixel grid means that all image elements 

are the same size, and thus the calculation of functional parameters do not need to scale 

image elements by size. A representation on a triangular grid is common when the 

underlying algorithm uses a finite element mesh. In this case, image elements are typically 

of different sizes, but can often approximate the boundary shape more accurately. We 

recommend the use of pixel grid; since EIT is a functional modality, the ease of representing 

functional parameters is more useful than the ability to represent the boundary shape. 



15 
 

 

Figure E2.9. Representation of EIT images. Left: EIT reconstructed image parameters 

represent pixels in a matrix (green); Right: EIT reconstructed image parameters represent 

triangular regions based on a finite element mesh (green). 

 

Colour mapping 

The color coding of EIT images is not unified. Different color representations have been used 

by various research groups and vendors of EIT technology. Perhaps the most common are 

the grey and "jet" color maps but many other representations have been used. Figure E2.10 

shows some commonly used color mappings.  

We identify specific issues with the choice of EIT color coding. First, for difference 

images, there is a zero, which represents no change in the images. This zero has a clear 

representation in some image color codings. Positive and negative changes from this zero 

are then defined. However, some other color schemes do not define the zero color and only 

the color limits representing the maximum and minimum image values are provided.  

Two choices have been made to modify the visual strength of these conductivity 

changes. First, the choice of colors may modulate the appearance of positive and negative 

changes, and, second, the use of a uniform region which compresses all changes less than a 

certain level to be represented as the zero color. In the absence of consensus, we 

recommend that color maps be defined and clarified for each use. 
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Figure E2.10. Common color coding schemes used in EIT lung images, based on academic 

publications (top row) and EIT system vendors (bottom row). The representation of 

impedance increase (Z↑ or +Z) and impedance decrease (Z↓ or –Z) are described. 

Top left: Blue-white-red, showing Z↑ as blue, Z↓ as red, and zero as white. 

Top middle: Gray, representing Z↑ as white, and Z↓ as black. This color scheme does not 

define a fixed color value for no change (zero). 

Top right: Jet, defined from the definition in Matlab (Mathworks, Nantick, MA, USA). 

representing Z↑ as red, and Z↓ as blue. This color scheme does not define a fixed color value 

for no change (zero). 

Bottom left: Draeger, representing Z↑ blue-white, Z↓ as purple, and zero as black with a 

uniform color region around zero. 

Bottom middle: Swisstom, representing Z↑ as blue-white, and zero as blue-grey with a 

uniform color region at and above zero. Colors for Z↓ are not defined. 

Bottom right: Timpel, representing Z↑ as blue-white, and zero as grey black with a uniform 

color region at and above zero. Colors for Z↓ are not defined. 

(The raw EIT data used to generate the images with different color coding in this figure were 

acquired in a healthy human subject during tidal breathing and originate from (38).) 
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Image reconstruction orientation 

The orientation of EIT images is identical with the images generated by established medical 

imaging modalities like computed tomography with the subject right side on the left side of 

the image and with anterior at the top of the image. In much of the older EIT literature 

(before 2000), it was common to represent the EIT image horizontally reversed, that is with 

the subject anterior shown at the bottom of the image (Figure E2.11). 

 

Figure E2.11. Image orientation. Modern EIT systems use a medical image orientation 

(left) while some older systems were vertically flipped (right). (Data is from (3)). 

 

Selection of tdEIT baseline measurement 

 

As mentioned, tdEIT reconstructs a change in volume distribution between a baseline 

measurement and a current measurement. Therefore, interpretation of the image requires 

the knowledge of what is "happening" in terms of physiology at both measurement points. 

While the "current" measurement normally represents a point in time, the "baseline" 

measurement represents either another single point in time or the mean value of a period of 

time. It is thus essential to specify how the baseline measurement is selected. Various 

strategies have been developed to select a baseline measurement; however, a small number 

of approaches are most commonly used, and are discussed here. 

 

Baseline as a mean of EIT data   

The most common strategy is to simply use the mean of all measurements as the baseline 

image. This approach has two benefits. It is simple and robust. It can be applied to all types 

of breathing patterns, and is less affected by sighs, coughs, other "unusual" breathing 

patterns, or signal disturbances. However, the main disadvantage is that images will be 

represented as both positive and negative. It is generally more difficult to visually interpret 

these images, as the "zero" image does not correspond to any particularly physiologically 



18 
 

significant time (typically it will represent lung midcapacity above end-expiratory lung 

volume). Another disadvantage is that the global mean is only available after the complete 

recording. This strategy is thus only suitable for post-processing of data. Figure E2.12 shows 

how the appearance of EIT images is influenced when mean EIT measurement data are 

used as baseline.  

 

Figure E2.12. EIT images and the global EIT waveform for the baseline based on the mean 

value of acquired EIT data. Top row, images (using a blue-black-red color coding) 

corresponding to the indicated times (dashed lines). Bottom row: average image value vs. 

time for the shown three breaths (data from (3)). 

 

Baseline at end-expiration or end-inspiration 

Another common strategy is to select a physiologically meaningful event as the baseline 

scan. This is typically the end of expiration or inspiration. The advantage is that images then 

have a more natural physiological interpretation (Figures E2.13 and E2.14). The chosen 

baseline scan may be either a single instant, or an average of all end-expiration in the 

recording. The baseline may be chosen manually or with automated software. 

One disadvantage with this strategy is that "unusual" breathing patterns, such 

coughs or sighs or other signal disturbances, can make identification of a true physiological 

event difficult. Additionally, this strategy is most suitable for post-processing of data. 
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Figure E2.13. EIT images and the global EIT waveform for the "end-expiratory" baseline 

measurement. Top row, images (using a blue-black-red color coding) corresponding to the 

indicated times (dashed lines). Bottom row: average image value vs. time for the shown 

three breaths (data from (3)). 

 

 

Figure E2.14. EIT images and the global EIT waveform for the "end-inspiratory" baseline 

measurement. Top row, images (using a blue-black-red color coding) corresponding to the 

indicated times (dashed lines). Bottom row: average image value vs. time for the shown 

three breaths (data from (3)). 
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Baseline from moving averages 

In cases where it is essential to analyse EIT data on-line, a dynamic selection of the baseline 

scan is required. Clearly, such a strategy must use only previous data, and must thus be 

updated dynamically. In this case, the most natural extension of the mean scan baseline 

strategy is a dynamic mean. As an example, in Figure E2.15, the mean of the previous 2 s of 

data is used. However, in practice a longer interval is used. The dynamic mean has many of 

the advantages and disadvantages of the mean scan. Additionally, it can show temporary 

differences when the patient state changes. For example, when PEEP or patient posture 

changes, the dynamic mean will slowly adjust to the new level at which point it will "forget" 

the previous state. 

 

Figure E2.15. EIT images and the global EIT waveform for the "dynamic mean" baseline 

measurement, in which the mean is based on the last 2s of the signal. Top row, images 

(using a blue-black-red color coding) corresponding to the indicated times (dashed lines). 

Bottom row: average image value vs. time for the shown three breaths (data from (3)). 

 

The natural extension of the end-expiratory strategy for on-line analysis is the 

dynamic end-expiratory baseline. In this case, the average of the previous N end-expirations 

is chosen (Figure E2.16). This strategy has the advantages of the dynamic mean scan, but 

also has a more natural physiological interpretation since the baseline scan corresponds to a 

natural physiological interpretation. 
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Figure E2.16. EIT images and the global EIT waveform for the "dynamic end-expiratory" 

baseline measurement, in which the baseline is based on the last three end-expiratory 

events. Top row, images (using a blue-black-red color coding) corresponding to the indicated 

times (dashed lines). Bottom row: average image value vs. time for the shown three breaths 

(data from (3)). 

 
Document preparation 

 

This online document was prepared by A. Adler. It was reviewed and approved by all other 

authors and collaborators. 
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