(defined as 4 or more courses in the previous year), and meeting bodyweight and IgE criteria for omalizumab treatment.

Results 748 subjects with severe asthma were enrolled in the study of which 670 met analysis criteria. After exclusion of subjects currently treated with omalizumab (n = 168), 502 subjects were included in this post-hoc analysis (mean age = 50.9 years; 62% female). 60 subjects (12% [95% Exact CI: 9.2–15.1%]) were eligible for mepolizumab (SMC advice) and 16 (3.2% [1.8–5.1]) were eligible for omalizumab (NICE MTA guidance). Among the 60 mepolizumab eligible subjects, 10 (16.7% [8.3–28.5%]) were also eligible for omalizumab.

Conclusions This is the first cross-sectional study providing estimation of the proportion of severe asthma patients eligible for biologic therapy in accordance with Scottish guidance, indicating 12% mepolizumab-eligible and 3.2% omalizumab-eligible patients with limited overlap.

Funding GSK; 201722

Spoken sessions

VITAMIN D FOR THE MANAGEMENT OF ASTHMA: COCHRANE SYSTEMATIC REVIEW AND META-ANALYSIS

| 1AR Martineau, 2CJ Cates, 3M Urashima, 4M Jensen, 5AP Griffiths, 6CJ Griffiths. | Queen Mary University of London, London, UK; 2St George’s University of London, London, UK; 3Jikei University School of Medicine, Tokyo, Japan; 4University of Newcastle, Newcastle, Australia; 5Cardiff University, Cardiff, UK; 6University of Edinburgh, Edinburgh, UK |

Introduction and objectives Several clinical trials of vitamin D to prevent asthma exacerbation and improve asthma control have been conducted in children and adults, but a meta-analysis restricted to double-blind randomised placebo-controlled trials of this intervention is lacking. We conducted a Cochrane systematic review and meta-analysis to evaluate the efficacy of administration of vitamin D in reducing asthma exacerbations treated with systemic corticosteroids (primary outcome) and improving asthma symptom control.

Methods Standard Cochrane collaboration procedures were followed. Double-blind randomised placebo-controlled trials of vitamin D in children and adults with asthma evaluating exacerbation risk and/or asthma symptom control were included.

Results Seven trials involving a total of 435 children and two trials involving a total of 638 adults were included in the primary analysis. Administration of vitamin D reduced the rate of exacerbations requiring systemic corticosteroids (Rate Ratio 0.63, 95% CI: 0.45 to 0.88; 680 participants; 3 studies; high quality evidence), and decreased the risk of having at least one exacerbation requiring an emergency department visit and/or hospitalisation (Odds Ratio [OR] 0.39, 95% CI: 0.19 to 0.78; number needed to treat for one additional person to experience a beneficial outcome (NNTB), 27; 963 participants; 7 studies; high quality evidence). There was no effect of vitamin D on % predicted forced expiratory volume in one second (Mean Difference [MD] 0.48, 95% CI: −0.93 to 1.89; 387 participants; 4 studies; high quality evidence) or Asthma Control Test scores (MD −0.08, 95% CI: −0.70 to 0.54; participants = 713; studies = 3; high quality evidence). Administration of vitamin D did not influence the risk of serious adverse events (OR 1.01, 95% CI: 0.54 to 1.89; 879 participants; 5 studies; moderate quality evidence). No participant in any included trial suffered a fatal asthma exacerbation.

Conclusions Meta-analysis of a modest number of trials in patients with predominantly mild to moderate asthma suggests that vitamin D is likely to reduce the risk of severe asthma exacerbation and reduce health care use.

Lung Cancer Biology and Mechanisms

S6 MMP12 AND LMO7, TWO KEY PLAYERS ON OPPOSITE SIDES OF EARLY LUNG SQUAMOUS CELL CARCINOMA DEVELOPMENT

1A Barrett, 2S Lourenco, 3K Kolluri, 4B Carroll, 5M Falzon, 6E Borg, 7J George, 8SM Janes, 9VH Teixeira. University College London, London, UK; 10University College London Hospital, London, UK

Background Our laboratory has a unique cohort of patients with pre-invasive lung squamous cell carcinoma (SqCC) lesions, within which there is a clear discrepancy between the prevalence of pre-invasive lesions and the incidence of lung cancer, suggesting that not all pre-invasive lesions progress to cancer. Using gene expression microarrays we identified 1846 genes significantly differentially expressed between progressive and regressive pre-invasive SqCC lesions.

The macrophage metalloelastase MMP12 gene was found to be highly expressed in progressive lesions, and we hypothesised that it plays a role in epithelial-to-mesenchymal transition (EMT). Conversely, the actin binding protein LIM-domain only 7 (LMO7) gene was highly expressed in regressive lesions, and we postulated that it may be protective against EMT due to its role in the maintenance of epithelial architecture.

Methods Eight-week-old NOD/SCID mice were used for tumorigenesis experiments. Adhesion assays were carried out to assess the roles of MMP12-knockdown or LMO7-overexpression on cell adhesion. Cell signalling mechanisms were assessed using western blotting, qPCR and immunostaining.

Results We observed that MMP12-knockdown decreases tumorigenicity in an immunocompromised mouse model. Both A431 and H357 MMP12-knockdown cells produced significantly smaller tumours compared with non-silencing shRNA controls. LMO7-shRNA knockdown in HBECS was found to significantly increase migration. The aim of this study is to further characterise the function and signalling of MMP12 and LMO7 in lung SqCC development.

Conclusions Our results suggest that MMP12 is a key driver of migration and invasion in SqCC and its high expression may contribute to EMT, whereas LMO7 is a putative tumour suppressor with a crucial role in maintaining epithelial cell architecture. MMP12 and LMO7 may be potential early stage therapeutic markers for lung cancer.