Lumacaftor/ivacaftor for patients homozygous for Phe508del-CFTR: should we curb our enthusiasm?

Andrew M Jones, Peter J Barry

Cystic fibrosis (CF) is a success story of modern medicine, with advances in care transforming a disease previously associated with early childhood death into a chronic condition with a predicted median survival of nearly 50 years for patients born in this current decade. This has been achieved through a model of multidisciplinary care with the successive advent of supportive therapies that tackled the consequences of the condition, such as replacement pancreatic enzymes, inhaled antibiotics and agents to improve mucociliary clearance. The quest for treatments that address the underlying basic defect has been a hope for the CF community since the discovery of the CF gene, which codes for the dysfunctional channel protein, the CF transmembrane conductance regulator (CFTR), in 1989. The Cystic Fibrosis Foundation supported an ambitious pipeline to identify molecules that could allow correction of the dysfunctional CFTR protein, which began to bear fruit in subsequent postmarketing phase III studies (TRAFFIC and TRANSPORT) of a large international multicentre phase III studies of two small molecules—lumacaftor, a CFTR corrector that targets the folding deficiency, and ivacaftor—in patients homozygous for Phe508del. A total of 1108 patients were randomised (1:1:1) to lumacaftor 600 mg daily/ivacaftor 250 mg twice daily, lumacaftor 400 mg twice daily/ivacaftor 250 mg twice daily, or placebo. The study achieved its primary endpoint of a mean absolute change from baseline of %FEV\textsubscript{1} of 2.6–4% in each of the combination treatment groups in both studies, in comparison to placebo at 24 weeks (p<0.001). In pooled analyses of both studies, pulmonary exacerbations were 30% lower in the 600 mg/day of lumacaftor group (p=0.001) and 39% lower in the 400 mg/12 h of lumacaftor group compared with placebo (p<0.001).

The question of whether these results merit the heralding of the study as a landmark advance in CF therapeutics is, however, open to debate. With approximately 45% of patients with CF homozygous for the Phe508del mutation, has the fulfilment of promise of effective CFTR modulation therapy for the largest cohort of patients been delivered? That this study represents a potential advance for CF therapeutics is not in doubt. The trial design, in particular, should be commended on the large numbers recruited (which in fact do represent a landmark for CF trials) and the permitted use of standard CF therapies for all participants, a factor often overlooked in other trials. However, the improvements in lung function seen in the study are modest at best, and considerably less than those for ivacaftor in patients with Gly551Asp mutation. This lack of enthusiasm does not solely represent an elevated sense of expectation following the initial experience with ivacaftor as the improvements in %FEV\textsubscript{1} are similar to those previously witnessed for a number of other treatments currently available that address the downstream consequences of CFTR dysfunction, such as DNAase, azithromycin and nebulised antibiotics.

Similarly, the reduction in pulmonary exacerbations is not an outlier when grouped with other pre-modulation therapies, a fact even more notable given the relatively low uptake of chronic azithromycin therapy in this cohort (61.4%).

The need for two molecules working on the processing and functioning of abnormal CFTR presents its own challenges. The potential for adverse events and drug–drug interactions will always increase with polypharmacy. The combination product was generally well tolerated in this study with low rates of discontinuations. Early chest tightness was witnessed in the treatment arm mimicking results of the phase II study. Although minor elevations of transaminases were seen across all groups in the study, more significant elevations of levels to three times the upper limit of normal in association with bilirubin elevations to twice the upper limit of normal, although rare, were only encountered in patients taking LUM/IVA (three patients). There is pharmacokinetic evidence of interaction between the two compounds in question, explaining the higher doses of ivacaftor used. There is also in vitro evidence of an interaction, with prolonged use of potentiators decreasing the stability of ‘corrected’ Phe508del CFTR. Could this finding explain the relatively modest improvement in pulmonary function? It almost certainly suggests the need for a further additive therapy with the aim of stabilising corrected CFTR.

The absence of data on sweat chloride levels or other CFTR biomarker appears an obvious omission. The changes in these parameters were modest in the phase II trials (−8.9 to −10.3 mmol/L), and while sweat chloride levels do not correlate with clinical response to ivacaftor in patients with Gly551Asp mutation, they still may represent a biomarker of CFTR activity.

Manchester Adult Cystic Fibrosis Centre, University Hospital of South Manchester NHS Trust, Manchester, UK.

Correspondence to Dr Andrew M Jones, Manchester Adult Cystic Fibrosis Centre, University Hospital of South Manchester NHS Trust, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK; andrew.jones@uhsm.nhs.uk

615

HOT off the breath

The drug pipeline continues with the recent opening of phase III clinical trials with a further CFTR corrector VX-661; however, the results of phase II studies with this combination were not substantially better. To focus on just these compounds also fails to address the needs of other patients with CF with rarer genotypes. In tandem with drug development needs to be the development of superior patient-specific biomarkers that may be able to predict responses to therapies ex vivo permitting those patients to gain access to these medications.

It should be recognised that even in the best representation of effective CFTR modulation, ivacaftor in patients with Gly551Asp mutation, adherence has been reported to be suboptimal and responses can be heterogeneous. These factors will need to be considered should combination therapy receive licensing, and effectiveness will need to be explored in a real-world setting, where lung function responses may not be as great as those seen in clinical trials. The results of this study represent a success for the CF community and should be welcomed as such; however, the recognition that these results should not represent the ‘holy grail’ for Phe508del homozygote patients is equally important.

Competing interests AMI has previously received consultancy fees from Gilead Sciences and Vertex Pharmaceuticals, and support for educational meetings from Forrest. PJB has received consultancy fees from Vertex Pharmaceuticals.

Provenance and peer review Commissioned; internally peer reviewed.

To cite Jones AM, Barry PJ. Thorax 2015;70:615–616.

Received 1 June 2015

Accepted 2 June 2015

REFERENCES

