ORIGINAL ARTICLE

Efficacy and safety of once-daily QVA149 compared with the free combination of once-daily tiotropium plus twice-daily formoterol in patients with moderate-to-severe COPD (QUANTIFY): a randomised, non-inferiority study

Roland Buhl,1 Christian Gessner,2,3 Wolfgang Schuermann,4 Karin Foerster,5 Christian Sieder,6 Simone Hiltl,6 Stephanie Korn7

ABSTRACT

Background QVA149 is a once-daily (o.d.) inhaled dual bronchodilator containing a fixed-dose combination of the long-acting β2-agonist indacaterol and the long-acting muscarinic antagonist glycopyrronium for the treatment of COPD. The QUANTIFY study compared QVA149 with a free-dose bronchodilator combination of tiotropium plus formoterol (TIO+FOR) in improving health-related quality of life (HRQoL) of patients with COPD.

Methods This multicentre, blinded, triple-dummy, parallel-group, non-inferiority study randomised patients aged ≥40 years with moderate-to-severe COPD (post-bronchodilator forced expiratory volume in 1 s (FEV1) ≥30% to <80% predicted) to QVA149 110/50 µg o.d. or TIO 18 µg o.d. + FOR 12 µg twice daily (1:1) for 26 weeks. The primary endpoint was to demonstrate non-inferiority in HRQoL assessed using St George’s Respiratory Questionnaire-COPD (SGRQ-C). The prespecified non-inferiority margin was 4 units. Secondary endpoints included Transition Dyspnoea Index (TDI) score, pre-dose FEV1, forced vital capacity (FVC) and safety.

Results Of the 934 patients randomised (QVA149=476 and TIO+FOR=458), 87.9% completed the study. At week 26, non-inferiority was met for SGRQ-C (QVA149 vs TIO +FOR; difference: −0.69 units; 95% CI −2.31 to 0.92; p=0.399). A significantly higher percentage of patients achieved a clinically relevant ≥1 point improvement in TDI total score with QVA149 (49.6%) versus TIO+FOR (42.4%; p=0.033). QVA149 significantly increased pre-dose FEV1 (+68 mL, 95% CI 37 mL to 100 mL; p<0.001) and FVC (+74 mL, 95% CI 24 mL to 125 mL; p=0.004) compared with TIO+FOR at week 26. The incidence of adverse events was comparable between both treatments (QVA149=43.7% and TIO+FOR=42.6%).

Conclusions QVA149 is non-inferior to TIO+FOR in improving HRQoL, with clinically meaningful and significant improvements in breathlessness and lung function in patients with COPD.

Trial registration number NCT01120717.

INTRODUCTION

Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2014 strategy, and the 2010 National Institute for Health and Care Excellence (NICE) guidelines recommend the use of combined bronchodilators of different pharmacological classes in patients with COPD.1 2 Combining bronchodilators has proved to be more efficacious and reduces the risk of side effects compared with increasing doses of monotherapy.3-6 The complementary mechanisms of action of long-acting β2-agonists (LABAs) and long-acting muscarinic antagonists (LAMAs) significantly improve bronchodilation in patients with COPD in comparison with respective monotherapies,6–8 and hence are recommended first-line treatment in patients with moderate-to-severe COPD.9

QVA149 is an inhaled once-daily (o.d.) dual bronchodilator containing a fixed-dose combination of the LABA indacaterol1 and the LAMA glycopyrro- nium10, being approved for the maintenance treatment of patients with symptomatic COPD in the European Union. Clinical studies have demonstrated the efficacy and safety profile of once-daily QVA149 in patients with COPD.10 11 12 Tiotropium (TIO), a LAMA, and formoterol (FOR), a LABA, are well-accepted bronchodilators for the treatment of COPD.6 13 14 The free-dose combination of TIO plus FOR, delivered via two separate inhalers, has established efficacy in a number of clinical trials, is recommended by COPD guidelines and has been widely used for many years. The combination has

Key messages

What is the key question?

▸ Is QVA149 non-inferior to tiotropium plus formoterol (TIO+FOR) combination in improving health-related quality of life (HRQoL) of patients with COPD?

What is the bottom line?

▸ QVA149 is non-inferior to TIO+FOR combination with respect to HRQoL, but shows significant improvements in breathlessness and lung function.

Why read on?

▸ This is the first non-inferiority trial comparing active pharmacological treatments using HRQoL as a primary endpoint.
been shown to significantly improve lung function, symptoms, reduce the number of COPD exacerbations and improve health-related quality of life (HRQoL).6–14–17

The BEACON study had shown non-inferiority of QVA149 compared with the free-dose combination of its monocomponents.18 However, in view of the wide usage and standard-of-care treatment with TIO and FOR free-dose combination, it remains conjectural whether QVA149 is non-inferior to this LABA/LAMA combination. The question examined by this study pertains to a highly relevant comparison based on the expectation that single inhalation QVA149 would have comparable patient-reported outcomes, and safety profile as the TIO+FOR free combination treatment, taken twice-daily via two separate inhalers.

In the QUANTIFY study, QVA149 o.d. was compared with TIO o.d. plus FOR twice-daily (b.i.d.) over a period of 26 weeks in patients with moderate-to-severe COPD. This study, though conducted for German health authorities, has wider scientific implications considering the wide usage of the TIO +FOR combination. Assessment of non-inferiority of QVA149 to TIO+FOR combination was based on a prespecified non-inferiority margin of 4 units on the St George’s Respiratory Questionnaire-COPD (SGRQ-C), which is a sensible definition for the limit of a clinically relevant effect for the improvement in SGRQ-C.19

PATIENTS AND METHODS

Study design and treatments

This was a 26-week multicentre, randomised, blinded, triple-dummy, parallel-group, non-inferiority design. After screening and a run-in period (up to 2 weeks), patients were randomised (1:1) to receive QVA149 (indacaterol 110 μg and glycopyrronium 50 μg) o.d. (delivered via the Breezhaler device (Novartis Pharma AG, Stein, Switzerland)) or TIO 18 μg o.d. (delivered via the HandiHaler device (Boehringer Ingelheim, Ingelheim, Germany)) plus FOR 12 μg b.i.d. (delivered via the Aerolizer device (Novartis Pharma AG)) and corresponding placebos (figure 1).14–15–20 Data were obtained from three examinations in each subject at baseline (visit 3), week 12 (visit 5), and week 26 (visit 7). The study did not include a placebo arm, as both treatments tested had shown efficacy in placebo-controlled trials.21–22–23 Salbutamol was used as a rescue drug. Patients receiving inhaled corticosteroids (ICS) at baseline continued treatment (or the ICS component alone if taken as a fixed combination with a bronchodilator) at the same or equivalent dose and regimen. The study was approved by institutional review boards and ethics committees, and was conducted in accordance with the Declaration of Helsinki and the International Conference on Harmonisation Good Clinical Practice guidelines. All patients provided written informed consent before study participation. Additional details are included in the online supplementary appendix.

Patients

The study population included men and women aged ≥40 years with moderate-to-severe COPD (GOLD II or III as defined in the GOLD 2010 strategy), current or ex-smokers with a smoking history of at least 10 pack-years, post-bronchodilator forced expiratory volume in 1 s (FEV1) ≥30% and <80% of predicted value, and post-bronchodilator FEV1 to forced vital capacity (FVC) ratio <0.70 at screening. The patient population was similar to those included in other efficacy trials using the TIO and FOR combination.14–15 Key exclusion criteria included COPD exacerbation that needed treatment with antibiotics, systemic corticosteroids (oral or intravenous) or hospitalisation in the 6 weeks before pre-screening or between pre-screening and randomisation (visits 1 and 3). Detailed inclusion and exclusion criteria are provided in the online supplementary appendix.

Assessments

HRQoL for eligible patients was measured using SGRQ-C.23 Dyspnoea was assessed using the Transition Dyspnoea Index (TDI), and spirometry (FEV1 and FVC) was done according to American Thoracic Society/ European Respiratory Society standards.24 The primary objective was to demonstrate non-inferiority of QVA149 compared with TIO+FOR combination for HRQoL with respect to the improvement in SGRQ-C. Secondary endpoints included TDI scores, symptoms of SGRQ-C, spirometry (FEV1 and FVC), rate of moderate and severe COPD exacerbations requiring hospitalisation and time to first moderate/severe exacerbation during the treatment period. Moderate exacerbations were those managed with antibiotics and/or systemic corticosteroids; severe exacerbations were those that resulted in hospitalisation. trough FEV1 measurements were done 45 and 15 min pre-dose (23 h 15 min and

Figure 1 Study design. b.i.d., twice daily; o.d., once daily; Pbo, placebo.

26-week, multicentre, randomised, blinded, parallel-group, triple-dummy non-inferiority study

Pre-screening

period

Dependent on washout restrictions

Day 1 to Day 183

Visit 7

Screening

period

Day -14 to Day -1

Visit 2

Randomisation (Visit 3)

Visit 1

QVA149: Tiotropium + Formoterol 1:1

QVA149 110/50 μg o.d. + Pbo to tiotropium o.d. + Pbo to formoterol b.i.d

Tiotropium 18 μg o.d. + Formoterol 12 μg b.i.d + Pbo to QVA 149 o.d.
23 h 45 min after the morning dose, respectively). FEV₁ 30 min measurements were performed 30 min after the morning dose. Study drug compliance was assessed by the study nurse by recording capsule counts.

Adverse events (AEs) and serious AEs (SAEs), including COPD exacerbations and vital signs, were recorded at each visit. ECG and laboratory analyses (haematology, clinical chemistry and urine analysis) were also carried out.

Statistical analysis
The non-inferiority margin was predefined as 4 units, which has been reported in the literature as a sensible definition for the limit for a clinically relevant effect for the SGRQ-C. However, this trial was powered to achieve a confidence interval (CI) that allowed excluding even a smaller difference of 3 units. The full analysis set (FAS) was used for the primary efficacy and safety analysis and the per-protocol set (PPS) analysis was conducted as a sensitivity measure. No interim analyses were performed.

The primary analysis was performed using an analysis of covariance model. The model contained treatment, SGRQ-C at baseline and centre as fixed effects. The estimated adjusted treatment difference for QVA149 minus TIO+FOR was displayed together with the associated 95% CI and p value (two-sided). In addition, a one-sided p value for the shifted null hypothesis of inferiority was given. The non-inferiority of QVA149 over TIO+FOR was claimed if the shifted, one-sided p value was <2.5% or, equivalently, if the 95% CI lays entirely to the left (smaller than) of the non-inferiority margin of four points. A true difference of 0 SGRQ-C units and a common standard deviation of 13 were assumed, leading to 396 patients/group to achieve 90% power to reject the null hypothesis of inferiority >3 points for QVA149 versus TIO+FOR. To compensate for drop-out, a minimum of 440 patients per group were to be enrolled into this trial.

RESULTS
Patients
Of the 1246 patients screened, 934 were randomised to QVA149 (N=476) or TIO+FOR (N=458), and 821 (87.9%) patients completed the study (figure 2). Completion and withdrawal rates were similar between the two treatment groups (figure 2). Baseline patient demographics, and other clinical characteristics were numerically comparable across the two treatment groups (table 1).

Details on concomitant drugs are provided as online supplementary data.

Efficacy
All the 934 randomised patients were included in the FAS. In the PPS analysis, 747 (80%) patients were included (QVA149: n=373 and TIO+FOR: n=374). Non-inferiority was met (p<0.001; one-sided, shifted test) for QVA149 compared with TIO+FOR as the upper margin of the CI was lower than the predefined non-inferiority margin of 4 units (figure 3). The change from baseline in the SGRQ-C total score (FAS and PPS) was comparable in both groups (figure 4A and see online supplementary figure S1A).

In the FAS, the percentage of patients achieving the minimum clinically important difference (MCID) of 4 units in the SGRQ-C total score was similar in the QVA149 and TIO groups.
+FOR groups (figure 4B). However, in the PPS, the difference was significantly in favour of QVA149 (p=0.038; see online supplementary figure S1B). Similar improvements in symptom, activity and impact scores of SGRQ-C (see online supplementary table S1) were seen with QVA149 versus TIO+FOR. A subgroup analysis on SGRQ-C based on gender, age group, use of ICS and disease stage (according to GOLD 2010) at week 26 showed no statistically significant influence of the variables (online supplementary table S2).

The TDI total score showed similar reduction in dyspnoea with QVA149 and TIO+FOR in the FAS (figure 5A) and PPS (online supplementary figure S2A). Significantly more patients receiving QVA149 achieved the MCID ≥1 unit in dyspnoea26 versus TIO+FOR in the FAS (p=0.033; figure 5B) and PPS (p=0.009; online supplementary figure S2B).

Compared with TIO+FOR, patients receiving QVA149 showed a higher pre-dose FEV₁ in the FAS (p<0.001) (figure 6A) and the PPS (p<0.001) (online supplementary table S3). Similarly, improvements in pre-dose FVC values were significantly greater in the QVA149 group than in the TIO+FOR group in the FAS (figure 6B) and PPS (see online supplementary table S3). Post-dose FEV₁ and post-dose FVC showed no significant differences between the treatment groups (figure 6A, B and online supplementary table S3).

The percentage of patients who had at least one moderate or severe exacerbation, and time to first moderate or severe exacerbation, analysed using the Kaplan–Meier method were comparable between the two treatment groups (see online supplementary figure S3 and table S4).

### Safety

Overall, the study drug exposure was similar between both groups. The mean±SD duration of exposure was 167.2±44.6 days in the QVA149 group and 169.0±41.0 days in the TIO+FOR group. The average drug compliance was nearly 100% in both treatment groups (mean±SD: QVA149 99.5±8.6, TIO 98.9±11.0 and FOR 97.9±10.8). Table 2 summarises the individual AEs, which were similar in both treatment groups.

Pneumonia occurred at a higher frequency in the TIO+FOR group than in the QVA149 group. The number of AEs leading to study discontinuation was comparable in both groups (table 3).

Pneumonia led to premature discontinuation in four patients in the TIO+FOR group, with two patients showing a causal relationship to the study drug. Other AEs leading to study drug discontinuation were cough (n=2 in each group), dyspnoea (QVA149, n=2 and TIO+FOR, n=1), and myocardial infarction (QVA149, n=2). Overall, AEs with a suspected relationship to the study drug were comparable in both treatment groups (table 3).

Overall SAEs and SAEs leading to study discontinuations were comparable in both treatment groups (table 3). Three cases of SAEs in the QVA149 group (one patient each of cerebral ischaemia, tachycardia and an unknown reason leading to death), and one case of SAE (stress cardiomyopathy) in the TIO+FOR group were suspected to be study drug-related.

Overall, three deaths were reported in each group (table 3). In the QVA149 group, the causes of death were myocardial infarction (n=1), pulmonary embolism (n=1) and an unknown reason (n=1). In the TIO+FOR group, the causes of death were due to CVD (n=1), cancer (n=2) and other unclassified reasons leading to death (n=1).
were acute cardiac failure (n=1), coronary artery disease (n=1) and acute dyspnoea and brain injury (n=1).

**DISCUSSION**

The QUANTIFY study, for the first time, compared the efficacy of a fixed-dose LABA/LAMA combination (QVA149) with a free-dose combination (TIO+FOR). The combination of TIO and FOR, the standard-of-care LABA and LAMA, respectively, is suggested to be the most widely used free-dose LABA/LAMA combination, hence used as an active comparator in this study. To our knowledge, use of HRQoL as a primary endpoint for comparing active pharmacological interventions for COPD has not been previously evaluated. Moreover, it is well recognised that the effectiveness of COPD treatments should not be assessed by lung function alone.27 This is of particular relevance as the study focused on patient-reported outcomes, which are of key importance, for patients and their physicians and also for health technology assessments.28 The study met its primary endpoint by demonstrating non-inferiority of QVA149 versus TIO+FOR in terms of HRQoL, as assessed by the SGRQ-C. The non-inferiority margin of −4 points is an accepted threshold.19 The study was powered to exclude a difference of −3 units and would have reached non-inferiority even for −1 units. The treatment difference between QVA149 and TIO+FOR indicated a numerical improvement in favour of QVA149. This seemingly small difference, albeit not significant, indicates that more patients receiving QVA149 may achieve clinically relevant improvements in quality of life than those receiving TIO+FOR.19 This was corroborated with a numerically higher percentage of QVA149-treated patients achieving clinically relevant improvement in SGRQ-C compared with patients receiving TIO+FOR, which reached statistical significance in the PPS population.

Concomitant drugs did not influence efficacy parameters as the patient baseline characteristics were comparable between treatment groups. Also, the study was undertaken within a close geographical area, so ethnicity and regional factors become negligible. Dyspnoea is the cardinal symptom of COPD and is the major symptom causing patients with COPD to seek medical attention, and also the most relevant burden on patients.12 6 Responder rates, which are based on validated response criteria such as MCID, are accepted for comparing active treatments, as the response definition already includes a threshold for relevance.25 29 QVA149 demonstrated a statistically significant improvement in TDI responder rates (MCID of ≥1 point improvement) compared with TIO+FOR, which was consistent with the BLAZE and the SHINE studies, with the difference being that these studies used only TIO as an active comparator.3 29

Statistically significant improvements in pre-dose FEV₁ and FVC were seen in a comparison of QVA149 with TIO+FOR. It is plausible that this bronchodilatory effect might have enabled patients to attain greater levels of activity, and hence improved quality of life.10 51 As expected, the treatment difference was not as pronounced for post-dose FEV₁ and FVC, as both LABAs (indacaterol and formoterol) are potent bronchodilators with a fast onset of action.32 The simultaneous inhalation of LABA and LAMA from a single device is not the underlying cause, as the

**Figure 3** SGRQ-C score at week 26, change from baseline in each treatment group (by FAS and PPS). The non-inferiority margin was −4 to 4 units (shown by dotted line). FAS, full analysis set; FOR, formoterol; PPS, per-protocol set; SGRQ-C, St George’s Respiratory Questionnaire for patients with COPD; TIO, tiotropium.
Figure 5  TDI total score. (A) TDI total score (LSM) after 26 weeks and (B) percentages of patients achieving the minimum clinically important difference (≥1 units) (FAS). FOR, formoterol; FAS, full analysis set; LSM, least squares mean; RR, risk ratio; TDI, Transition Dyspnoea Index; TIO, tiotropium. ns, not significant. @p<0.05.

Figure 6  Lung function at week 12 and week 26 (FAS). (A) Pre-dose and post-dose FEV\textsubscript{1} and (B) pre-dose and post-dose FVC. FAS, full analysis set; FEV\textsubscript{1}, forced expiratory volume in 1 s; FVC, forced vital capacity. *p<0.001; #p<0.01; ns, not significant.
Although this study was neither designed nor powered to examine exacerbation rates, fewer patients receiving QVA149 had at least one moderate or severe exacerbation compared with those receiving TIO+FOR. The prevention and reduction of exacerbations might be consequent to improved 24 h bronchodilation and potentially contributed to the improvements in SGRQ total score and TDI responders in the QVA149 group as exacerbations are generally associated with worse health outcomes.

The beneficial clinical effects of QVA149 versus TIO+FOR treatments are probably a consequence of more potent bronchodilation translating into greater improvements in health status. This view is supported by similar results when single once-daily bronchodilators were compared with drugs with a twice-daily regimen. It is tempting to speculate about other ‘real-life’ benefits of one versus several inhalation(s) a day, which cannot be substantiated in a triple-dummy design, owing to difficulties with different inhalers, complex medication regimens involving multiple drugs and dosing intervals, and the potential to make mistakes.

The incidence and severity of AEs and SAEs were as expected for the patient population in the stage of disease studied, with no clinically relevant differences between the groups. At first instance, the low incidence of typical side effects (eg, dry mouth in the TIO+FOR arm, cough upon inhalation in the QVA149 arm) is surprising. However, this is in line with other QVA149 trials that included tiotropium as comparator. Additionally, the QUANTIFY study recruited many patients with previous exposure to both drugs, who had experienced these side effects and no longer considered them noteworthy. There were no additional safety concerns for either QVA149 or TIO+FOR. The results were consistent with previous clinical studies.

There was nearly 100% compliance with treatment in both groups, which is generally expected in a trial. Clinical evidence suggests that adherence to COPD treatment in routine life is strongly correlated with dosing frequency, with once-daily dosing having the highest adherence relative to twice- or thrice-daily dosing. Hence, even more pronounced treatment differences can be expected in favour of QVA149 in a real-life setting as patients tend to forget their medication. In addition, QVA149 offers the benefits of dual bronchodilation via a single inhaler device, making it a more convenient option and improving adherence compared with once-daily tiotropium plus twice-daily formoterol inhaled via two different devices.

The study has certain limitations. First, the study only considered the incidence of at least one exacerbation, rather than the

### Table 2 Most frequent AEs (excluding COPD exacerbations) in safety set population

<table>
<thead>
<tr>
<th></th>
<th>QVA149 (110/50 μg)</th>
<th>TIO (18 μg)+ FOR (12 μg)</th>
<th>RR (95% CI)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with any AE(s) (total)</td>
<td>208 (43.7)</td>
<td>195 (42.6)</td>
<td>1.03 (0.89 to 1.19)</td>
</tr>
<tr>
<td>Preferred term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>42 (8.8)</td>
<td>53 (11.6)</td>
<td>0.76 (0.52 to 1.12)</td>
</tr>
<tr>
<td>Cough</td>
<td>26 (5.5)</td>
<td>20 (4.4)</td>
<td>1.25 (0.71 to 2.18)</td>
</tr>
<tr>
<td>Dyspnoea</td>
<td>9 (1.9)</td>
<td>17 (3.7)</td>
<td>0.51 (0.24 to 1.14)</td>
</tr>
<tr>
<td>Headache</td>
<td>7 (1.5)</td>
<td>9 (2.0)</td>
<td>0.75 (0.29 to 1.96)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>7 (1.5)</td>
<td>5 (1.1)</td>
<td>1.35 (0.44 to 3.91)</td>
</tr>
<tr>
<td>Back pain</td>
<td>6 (1.3)</td>
<td>7 (1.5)</td>
<td>0.83 (0.29 to 2.37)</td>
</tr>
<tr>
<td>Dry mouth</td>
<td>6 (1.3)</td>
<td>6 (1.3)</td>
<td>0.96 (0.33 to 2.83)</td>
</tr>
<tr>
<td>Rhinitis</td>
<td>6 (1.3)</td>
<td>5 (1.1)</td>
<td>1.16 (0.37 to 3.51)</td>
</tr>
<tr>
<td>Bronchitis</td>
<td>5 (1.1)</td>
<td>3 (0.7)</td>
<td>1.60 (0.40 to 5.74)</td>
</tr>
<tr>
<td>Hypercholesterolaemia</td>
<td>5 (1.1)</td>
<td>1 (0.2)</td>
<td>4.81 (0.58 to 21.36)</td>
</tr>
<tr>
<td>Influenza</td>
<td>4 (0.8)</td>
<td>5 (1.1)</td>
<td>0.77 (0.23 to 2.72)</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>4 (0.8)</td>
<td>2 (0.4)</td>
<td>1.92 (0.37 to 8.09)</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>4 (0.8)</td>
<td>1 (0.2)</td>
<td>3.85 (0.46 to 18.24)</td>
</tr>
<tr>
<td>Dysphonia</td>
<td>3 (0.6)</td>
<td>4 (0.9)</td>
<td>0.72 (0.19 to 3.01)</td>
</tr>
<tr>
<td>Cystitis</td>
<td>2 (0.4)</td>
<td>6 (1.3)</td>
<td>0.32 (0.09 to 1.58)</td>
</tr>
<tr>
<td>Chest discomfort</td>
<td>2 (0.4)</td>
<td>4 (0.9)</td>
<td>0.48 (0.12 to 2.50)</td>
</tr>
<tr>
<td>Vertigo</td>
<td>2 (0.4)</td>
<td>4 (0.9)</td>
<td>0.48 (0.12 to 2.50)</td>
</tr>
<tr>
<td>Muscle spasms</td>
<td>1 (0.2)</td>
<td>7 (1.5)</td>
<td>0.14 (0.03 to 1.11)</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>1 (0.2)</td>
<td>8 (1.7)</td>
<td>0.12 (0.03 to 0.96)</td>
</tr>
<tr>
<td>Upper abdominal pain</td>
<td>1 (0.2)</td>
<td>4 (0.9)</td>
<td>0.24 (0.05 to 2.03)</td>
</tr>
<tr>
<td>Upper respiratory tract infection</td>
<td>0 (0)</td>
<td>4 (0.9)</td>
<td>NE (0.01 to 1.98)</td>
</tr>
</tbody>
</table>

Data are presented as n (%) unless otherwise stated. Listed adverse events (using Medical Dictionary for Regulatory Activities high-level group terms) occurred in at least four patients in any treatment group. Safety set population included all patients, receiving at least one dose of study drug.

*Risk ratio is calculated as % of QVA149/ % of TIO+FOR.

### Table 3 SAEs, deaths and discontinuation of the study drug

<table>
<thead>
<tr>
<th></th>
<th>QVA149 (110/50 μg)</th>
<th>TIO (18 μg)+ FOR (12 μg)</th>
<th>RR (95% CI)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with any AE(s)</td>
<td>208 (43.7)</td>
<td>195 (42.6)</td>
<td>1.03 (0.89 to 1.19)</td>
</tr>
<tr>
<td>AE(s) with suspected drug relationship</td>
<td>32 (6.7)</td>
<td>24 (5.2)</td>
<td>1.20 (0.77 to 2.12)</td>
</tr>
<tr>
<td>AE(s) requiring concomitant medication/non-drug treatment</td>
<td>96 (20.2)</td>
<td>99 (21.6)</td>
<td>0.93 (0.73 to 1.20)</td>
</tr>
<tr>
<td>AE(s) leading to dose adjustment or study drug interruption</td>
<td>12 (2.5)</td>
<td>9 (2.0)</td>
<td>1.28 (0.55 to 2.92)</td>
</tr>
<tr>
<td>Patients with SAE(s)</td>
<td>30 (6.3)</td>
<td>24 (5.2)</td>
<td>1.20 (0.72 to 2.01)</td>
</tr>
<tr>
<td>SAE(s) with suspected drug relation</td>
<td>3 (0.6)</td>
<td>1 (0.2)</td>
<td>2.09 (0.33 to 15.14)</td>
</tr>
</tbody>
</table>

Data are presented as n (%) unless otherwise stated. Safety set included all patients who received at least one dose of the study drug.

*Risk ratio is calculated as % of QVA149% of TIO+FOR.
number of exacerbations experienced during the study. This was
due to the protocol modification during the course of the study,
allowing patients with a COPD exacerbation to remain in the
study, instead of being withdrawn. Second, because the study
was conducted between May and April the following year, sea-
sonal factors might have influenced results. This potential risk
was minimised both by randomisation and the large patient
population. There was no difference in seasonal exposure to
treatment between the two study arms. Third, as most patients
in this trial had non-frequent exacerbations, reflecting the real-
life situation, effectiveness assessments in patients with frequent
exacerbations would be of interest in future trials. Finally,
without a placebo arm the possibility cannot be excluded that
some of the improvements seen were mainly due to better
patient management in a clinical trial. However, in the
QUANTIFY study all differences between the two active treat-
ments were in favour of QVA149, strongly supporting a real
treatment effect rather than a random placebo effect.

CONCLUSIONS
The QUANTIFY study showed that QVA149 is non-inferior to
the standard-of-care, free-dose LABA/LAMA combination of tiotropium plus formoterol, for health-related quality of life, with
consistent improvement in lung function and dyspnoea. The
study supports the premise that QVA149 treatment can be a
simpler alternative, suggesting improved patient adherence
and compliance. QVA149 has the potential to be more effective than
the free combination of TIO+FOR.

Author affiliations
1III.Medizinische Klinik und Poliklinik, Universitätsmedizin der Johannes Gutenberg-
Universität Mainz K.d.ö.R., Mainz, Germany
2Universitätsklinikum Leipzig, Leipzig, Germany
3POIS Leipzig GDR, Leipzig, Germany
4Pneumologische Praxis, Marburg, Germany
5Kardio-Pneumologische Praxis, Berlin, Germany
6Novartis Pharma GmbH, Nürnberg, Germany
7Universitätsmedizin der Johannes Gutenberg-Universität, Mainz, Germany

Acknowledgements
The authors thank the patients who participated, and the
staff at the participating clinical centres. The authors were
assisted in the preparation of the manuscript by Vivek Khanna (Novartis). All authors participated in
the development and writing of the manuscript and take full responsibility for its
content. All authors approved the final draft that was submitted.

Contributors
RB and SK contributed to the design of the study. RB, the principal
investigator of the study, read and commented on the full study report, and had
final responsibility for the decision to submit for publication. CG, WS, WF and SK,
investigators of the study, contributed to the writing of each draft of the manuscript.
SH and CS, as employees of the sponsor, contributed to the design and preparation,
conduct, analysis and interpretation of the study for the manuscript, and also
contributed to the writing of each draft of the manuscript.

Funding
The study was supported and funded by Novartis Pharma GmbH,
Germany. Writing support was funded by Novartis Pharma AG, Basel, Switzerland.
No restrictions were placed on authors regarding the statements made in the
manuscript.

Competing interests
RB has received reimbursement for attending scientific
conferences, and/or fees for speaking and/or consulting from AstraZeneca,
Boehringer Ingelheim, Chiesi, GlaxoSmithKline, Grifols, Novartis, Takeda and Roche.
SK has served as an advisor to GlaxoSmithKline and received lecture fees from
Almirall, AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Novartis, Takeda and
Grifols. CG has served as an advisor to Boehringer Ingelheim, Chiesi, Novartis
and Teva and received lecture fees from Almirall, Boehringer Ingelheim, Chiesi,
GlaxoSmithKline and Novartis. KF has received speaker’s fees from Almirall, Astra
Zeneca, Berlin Chemie, Boehringer Ingelheim, Chiesi, GlaxoSmithKline, Janssen
Cilag, MSD, Mundipharma and Novartis. CS and SH are employees of Novartis
Pharma GmbH.

Patient consent
Obtained.

Ethics approval
Institutional review boards and ethics committees at participating centres.

Provenance and peer review
Not commissioned; externally peer reviewed.

Open Access
This is an Open Access article distributed in accordance with the Creative
Commons Attribution Non Commercial (CC BY-NC 4.0) license, which
permits others to distribute, remix, adapt, build upon this work non-commercially,
and license their derivative works on different terms, provided the original work is
properly cited and the use is non-commercial. See: http://creativecommons.org/
licenses/by-nc/4.0/

REFERENCES
1 National Clinical Guideline Centre. Chronic obstructive pulmonary disease:
management of chronic obstructive pulmonary disease in adults in primary and
2 GOLD. Global strategy for the diagnosis, management, and prevention of chronic
3 Bateman ED, Ferguson GT, Barnes N, et al. Dual bronchodilation with QVA149 versus
5 Toy EL, Beaulieu NU, McHale IM, et al. Treatment of COPD: Relationships between
daily dosing frequency, adherence, resource use, and costs. Respir Med
6 van Noord JA, Aumann JL, Janssens E, et al. Comparison of tiotropium once daily,
formoterol twice daily and both combined once daily in patients with COPD.
7 van Noord JA, Aumann JL, Janssens E, et al. Combining tiotropium and salmeterol in
8 Vogelmeier CF, Bateman ED, Pallante J, et al. Efficacy and safety of once-daily
QVA149 compared with twice-daily salmeterol-floventac in patients with chronic
obstructive pulmonary disease (ILLUMINATE): a randomised, double-blind, parallel
9 MeKea K. Indacaterol: a review of its use as maintenance therapy in patients
10 Buhl R, Banerji D. Profile of glycopyrronium for once-daily treatment of
QVA149 in COPD patients: the ENLIGHTEN study. Respir Med
disease exacerbations with the dual bronchodilator QVA149 compared with
glycopyrronium and tiotropium (SPARK): a randomised, double-blind, parallel
13 Cazzola M, Molinard M. The scientific rationale for combining long-acting beta2–
with tiotropium in patients with COPD: a 6-month study. Respir Med
15 Tashkin DP, Pearle J, Lecorz S, et al. Formoterol and tiotropium compared with
16 van der Molen T, Cazzola M. Beyond lung function in COPD management:
effectiveness of LABA/LAMA combination therapy on patient-centred outcomes.
alone in stable chronic obstructive pulmonary disease: a meta-analysis. Respirology
18 Dahl R, Jadayel D, Alagappan VK, et al. Efficacy and safety of QVA149 compared to the
concurrent administration of its monocomponents indacaterol and glycopyrronium:
20 Kamer C, Cates CJ. Long-acting beta(2)-agonist in addition to tiotropium versus
either tiotropium or long-acting beta(2)-agonist alone for chronic obstructive
21 Kamer C, Chong J, Poole P. Tiotropium versus placebo for chronic obstructive
22 Kew KM, Mavergames C, Walters JA. Long-acting beta2-agonists for chronic
23 Jones PW, Quirk FH, Baveystock CM, et al. A self-complete measure of health status
for chronic airflow limitation. The St. George’s Respiratory Questionnaire. Am Rev
26 Witek TJ Jr, Mahler DA. Minimal important difference of the transition dyspnoea
27 Glaab T, Vogelemeier C, Buhl R. Outcome measures in chronic obstructive pulmonary
Supplementary Appendix

Efficacy and safety of once-daily QVA149 compared with the free combination of once-daily tiotropium plus twice-daily formoterol in patients with moderate-to-severe COPD (QUANTIFY): a randomised, blinded, non-inferiority study

Roland Buhl1*, Christian Gessner2, Wolfgang Schuermann3, Karin Foerster4, Christian Sieder5, Simone Hiltl5, Stephanie Korn6

1. III. Medizinische Klinik und Poliklinik, Universitätsmedizin der Johannes Gutenberg-Universität Mainz K.d.ö.R., Langenbeckstrasse 1, 55131 Mainz, Germany Tel. +49 6131 17 7270; Fax +49 6131 17 5545; E-mail: roland.buhl@unimedizin-mainz.de
2. Universitätsklinikum Leipzig, Liebigstrasse 18, 04103 Leipzig, Germany and POIS Leipzig GbR, Tauchaer Strasse 12, 04357 Leipzig, Germany
3. Pneumologische Praxis, Bahnhofstrasse 30, 35037 Marburg, Germany
4. Kardio-Pneumologische Praxis, Möllendorffstr. 111, 10367 Berlin, Germany
5. Novartis Pharma GmbH, Roonstrasse 25, Nürnberg, D-90429, Germany
6. Universitätsmedizin der Johannes Gutenberg-Universität, Langenbeckstrasse 1, 55131 Mainz, Germany

*Corresponding author
Clinical Trial Registration NCT01120717
METHODS

Study design

The study was conducted in 164 centers across Germany, of which 3 were academic centres and the remaining were practising physician offices that included registered pneumologists. The first patient was enrolled on 4 May, 2012, and the last patient completed the study on 2 April, 2013.

Inclusion and exclusion criteria

Inclusion criteria

- Male or female adults aged ≥ 40 years, who had signed an informed consent form before initiation of any study-related procedure.
- Patients with moderate- to-severe stable chronic obstructive pulmonary disease (COPD; Stage II or Stage III) according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines 2010.
- Current or ex-smokers with a smoking history of at least 10 pack-years (10 pack-years was defined as 20 cigarettes a day for 10 years, or 10 cigarettes a day for 20 years, etc.).
- Patients with a post-bronchodilator forced expiratory volume in 1 second (FEV₁) ≥ 30% and < 80% of the predicted normal, and post-bronchodilator FEV₁/FVC < 0·7 at Visit 2 (post referred to 1 hour after sequential inhalation of 84 μg [or equivalent dose] of ipratropium bromide and 400 μg of salbutamol).

Exclusion criteria

- Pregnant women and nursing mothers.
- Women of child-bearing potential, unless they met the following definition of post-menopausal criteria: 12 months of natural (spontaneous) amenorrhea, or 6 months of spontaneous amenorrhea with serum follicle-stimulating hormone (FSH) levels > 40 mIU/mL or 6 weeks after surgical bilateral oophorectomy (with or without hysterectomy).

- Patients contraindicated for treatment with, or having a history of reactions/hypersensitivity to any of the following inhaled drugs, drugs of a similar class or any component thereof: anticholinergics, long-/short-acting β₂-agonists, sympathomimetic amines, lactose, or any of the other excipients.

- Patients with a history of long QT syndrome or whose corrected QT (QTc) measured at Visit 2 was prolonged (> 450 ms for males and females).

- Patients who had a clinically significant abnormality on the electrocardiogram (ECG) at Visit 2, who in the judgment of the investigator were at potential risk if enrolled into the study (these patients could not be re-screened).

- Patients with paroxysmal (e.g. intermittent) atrial fibrillation. Patients with persistent atrial fibrillation defined by continuous atrial fibrillation for at least 6 months and controlled with a rate control strategy (i.e., beta blocker, calcium channel blocker, pacemaker placement, digoxin or ablation therapy) for at least 6 months could be considered for inclusion. In such patients, atrial fibrillation had to be present at baseline and screening visits, with a resting ventricular rate of < 100/min.

- Patients with Type I or uncontrolled Type II diabetes.

- Patients with narrow-angle glaucoma, symptomatic prostatic hyperplasia or bladder-neck obstruction or moderate-to-severe renal impairment or urinary retention (patients with a transurethral resection of prostate [TURP] were excluded from the study. Patients who had undergone full re-section of the prostate, as well as patients who were asymptomatic and stable on pharmacological treatment for the condition were considered for the study).
- Patients with a history of malignancy of any organ system, treated or untreated, within the past 5 years, with or without an evidence of local recurrence or metastases, and with the exception of localised basal cell carcinoma of the skin. Patients with non-melanoma skin carcinoma could be considered for the study.

- Patients who in the judgement of the investigator had a clinically relevant laboratory abnormality or a clinically significant condition such as (but not limited to): unstable ischemic heart disease, left ventricular failure (New York Heart Association [NYHA] Class III and IV), history of myocardial infarction, arrhythmia (excluding chronic stable AF). Patients with such events not considered clinically significant by the investigator could be considered for inclusion in the study; uncontrolled hypo- or hyperthyroidism, hypokalemia or hyperadrenergic state; any condition which could compromise patient safety or compliance, interfere with evaluation, or preclude completion of the study.

- Patients who were, in the opinion of the investigator, known to be unreliable or non-compliant.

- Patients with a body mass index (BMI) of more than 40 kg/m²

**COPD-specific exclusion**

- Patients requiring long-term oxygen therapy (>15 h a day) on a daily basis for chronic hypoxemia.

- Patients who had a COPD exacerbation that required treatment with antibiotics, systemic steroids (oral or intravenous) or hospitalisation in the 6 weeks before pre-screening.

- Patients who developed a COPD exacerbation between the pre-screening and randomisation visits (Visits 1 and 3) were not eligible but were permitted to be re-screened after a minimum of 6 weeks after the resolution of the COPD exacerbation.

- Patients who had a respiratory tract infection within 6 weeks prior to pre-screening (Visit 1). Patients who developed a respiratory tract infection during the screening period (up to Visit 3) were not eligible, but were permitted to be re-screened 6 weeks after the resolution of the respiratory tract infection.
- Patients with concomitant pulmonary disease, e.g. pulmonary tuberculosis (unless confirmed by chest x-ray to be no longer active) or clinically significant bronchiectasis, lung fibrosis, sarcoidosis, interstitial lung disorder, pulmonary hypertension

- Patients with pulmonary lobectomy, lung volume reduction surgery, or lung transplantation

- Patients with any history of asthma indicated by (but not limited to) a blood eosinophil count of >600/mm$^3$ (at Visit 2) or onset of symptoms before 40 years

- Patients with eczema (atopic), known for high IgE levels, or a confirmed allergy history within the last 5 years

- Patients with allergic rhinitis using an H$_1$-antagonist or intra-nasal corticosteroids intermittently (treatment with a stable dose was permitted)

- Patients with a history and diagnosis of alpha-1 antitrypsin deficiency

- Patients participating in or planning to participate in the active phase of a supervised pulmonary rehabilitation programme during the study

### Concomitant medication allowed in the study

<table>
<thead>
<tr>
<th>Class of medication</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selective serotonin reuptake inhibitors</td>
<td>Stable dose for at least 30 days before the screening visit and during the study</td>
</tr>
<tr>
<td>(SSRIs)</td>
<td></td>
</tr>
<tr>
<td>Inhaled corticosteroids (stable long-term regimen)</td>
<td>Stable dose for at least 30 days before the screening visit and during the study.</td>
</tr>
<tr>
<td>H$_1$-antagonists</td>
<td>Stable dose for at least 5 days before the screening visit and during the study.</td>
</tr>
<tr>
<td>Inactivated influenza, pneumococcal or any other inactivated vaccine</td>
<td>Not administered within 48 h before the study visit</td>
</tr>
<tr>
<td>---------------------------------------------------------------</td>
<td>--------------------------------------------------</td>
</tr>
</tbody>
</table>

Concomitant medications were received by 52.9% of patients in the QVA149 group, and 50% of patients in the TIO+FOR group. These included medication mentioned in the table above (including COPD-related background therapy with ICS), as well as medication for comorbidities. Therefore, the influence of any of these medications on efficacy or safety results is deemed to be minimal.

**Randomisation and blinding**

A randomisation list was produced using a validated system that automated the random assignment of treatment arms to randomisation numbers in the specified ratio. The randomisation scheme was reviewed by a Biostatistics Quality Assurance Group, and was locked after approval. Patients were given the lowest available number of the randomisation block assigned to each site, which randomly allocated the patients in a one-to-one ratio to receive either QVA149 or TIO+FOR for a 26-week treatment period. Patients, investigator staff, personnel performing assessments, and data analysts remained blinded from randomisation until database lock. Blinding was achieved by specifying that study medications were dispensed by a third party not involved in other aspects of the study. In addition, a triple-dummy masking was used to blind treatment assignment despite different inhaler devices. Unblinding occurred in the case of emergencies, and at conclusion of the study.

**RESULTS**
<table>
<thead>
<tr>
<th></th>
<th>LSM treatment difference QVA149 versus TIO+FOR (LSM [95% CI])</th>
<th>p value for treatment comparison</th>
<th>LSM treatment difference QVA149 versus TIO+FOR (LSM [95% CI])</th>
<th>p value for treatment comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Symptom score</strong></td>
<td>-1.31 (-3.49 to 0.86)</td>
<td>0.237</td>
<td>-1.09 (-3.53 to 1.35)</td>
<td>0.379</td>
</tr>
<tr>
<td><strong>Activity score</strong></td>
<td>-1.03 (-3.07 to 1.02)</td>
<td>0.325</td>
<td>-1.08 (-3.31 to 1.16)</td>
<td>0.344</td>
</tr>
<tr>
<td><strong>Impact score</strong></td>
<td>-0.59 (-2.42 to 1.24)</td>
<td>0.528</td>
<td>-0.40 (-2.32 to 1.52)</td>
<td>0.682</td>
</tr>
</tbody>
</table>

CI=confidence interval. FOR=formoterol. FAS=full analysis set. LSM=least squares mean. PPS=per-protocol set. SGRQ-C=St George’s Respiratory Questionnaire-COPD. TIO=tiotropium.

**Table 1:** Sub scores on SGRQ-C (symptom score, activity score and impact score) at Week 26 (FAS and PPS)

**Table 2:** Subgroup analysis on SGRQ-C (based on gender, age, use of ICS and disease stage) at Week 26 (FAS and PPS)
<table>
<thead>
<tr>
<th></th>
<th>FAS LSM treatment difference QVA149 versus TIO+FOR (LSM [95% CI])</th>
<th>p value</th>
<th>p (interaction)</th>
<th>PPS LSM treatment difference QVA149 versus TIO+FOR (LSM [95% CI])</th>
<th>p value</th>
<th>p (interaction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>−1.12 (−3.20 to 0.95)</td>
<td>0.289</td>
<td></td>
<td>−1.67 (−3.86 to 0.52)</td>
<td>0.135</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>0.59 (−2.58 to 3.76)</td>
<td>0.714</td>
<td>0.541</td>
<td>−0.79 (−4.34 to 2.76)</td>
<td>0.662</td>
<td>0.607</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;65</td>
<td>−0.04 (−2.27 to 2.18)</td>
<td>0.969</td>
<td></td>
<td>−0.57 (−2.93 to 1.79)</td>
<td>0.636</td>
<td></td>
</tr>
<tr>
<td>≥65</td>
<td>−1.81 (−4.60 to 0.99)</td>
<td>0.205</td>
<td>0.659</td>
<td>−1.31 (−4.48 to 1.87)</td>
<td>0.418</td>
<td>0.944</td>
</tr>
<tr>
<td>ICS use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>−1.66 (−3.83 to 0.51)</td>
<td>0.133</td>
<td></td>
<td>−1.41 (−3.65 to 0.82)</td>
<td>0.215</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>0.33 (−2.49 to 3.15)</td>
<td>0.818</td>
<td>0.274</td>
<td>0.35 (−2.81 to 3.52)</td>
<td>0.825</td>
<td>0.373</td>
</tr>
</tbody>
</table>

Disease stage
<table>
<thead>
<tr>
<th>GOLD</th>
<th>LSM</th>
<th>p</th>
<th>95% CI</th>
<th>p (interaction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ II</td>
<td>0.05</td>
<td>0.969</td>
<td>−2.34 to 2.43</td>
<td>−0.72 (−3.25 to 1.81)</td>
</tr>
<tr>
<td>≥ III</td>
<td>−1.20</td>
<td>0.356</td>
<td>−3.76 to 1.36</td>
<td>−1.12 (−3.77 to 1.52)</td>
</tr>
</tbody>
</table>

CI=confidence interval. FOR=formoterol. FAS=full analysis set. GOLD=Global Initiative for Chronic Obstructive Lung Disease. ICS=inhaled corticosteroid. LSM=least squares mean. PPS=per-protocol set. TIO=tiotropium. p (interaction) is the p value for the interaction term (gender, age class, ICS usage or Gold stage) × treatment.
### Table 3: Lung function at Week 12 and Week 26 (PPS)

<table>
<thead>
<tr>
<th></th>
<th>Week 12</th>
<th></th>
<th>Week 26</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LSM treatment difference</td>
<td>p value for treatment</td>
<td>LSM treatment difference</td>
<td>p value for treatment</td>
</tr>
<tr>
<td></td>
<td>(LSM [95% CI])</td>
<td>comparison</td>
<td>(LSM [95% CI])</td>
<td>comparison</td>
</tr>
<tr>
<td>Pre-dose FEV₁ [L]</td>
<td>0.065 (0.033 to 0.098)</td>
<td>&lt; 0.001</td>
<td>0.073 (0.039 to 0.107)</td>
<td>&lt; 0.001</td>
</tr>
<tr>
<td>Post-dose FEV₁ [L]</td>
<td>0.019 (-0.013 to 0.050)</td>
<td>0.248</td>
<td>0.022 (-0.013 to 0.056)</td>
<td>0.216</td>
</tr>
<tr>
<td>Pre-dose FVC [L]</td>
<td>0.097 (0.041 to 0.153)</td>
<td>&lt; 0.001</td>
<td>0.082 (0.024 to 0.140)</td>
<td>0.006</td>
</tr>
<tr>
<td>Post-dose FVC [L]</td>
<td>0.002 (-0.056 to 0.059)</td>
<td>0.951</td>
<td>0.013 (-0.046 to 0.071)</td>
<td>0.677</td>
</tr>
</tbody>
</table>

CI=confidence interval. BDI=baseline dyspnoea index. CAT=COPD assessment test. FEV₁=forced expiratory volume in one second. FOR=formoterol. FVC=forced vital capacity. LSM=least squares mean. PPS=per-protocol set. TDI=transition dyspnoea index. TIO=tiotropium.
Table 4: Analysis of rate of moderate or severe COPD exacerbations over the treatment period (FAS)

<table>
<thead>
<tr>
<th></th>
<th>QVA149 (110/50 µg)</th>
<th>TIO (18 µg) + FOR (12 µg)</th>
<th>RR (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate/severe</td>
<td>62 (13.0)</td>
<td>70 (15.3)</td>
<td>0.85 (0.62, 1.17)</td>
<td>0.323</td>
</tr>
<tr>
<td>Moderate</td>
<td>52 (10.9)</td>
<td>61 (13.3)</td>
<td>0.82 (0.58, 1.16)</td>
<td>0.264</td>
</tr>
<tr>
<td>Severe</td>
<td>10 (2.1)</td>
<td>11 (2.4)</td>
<td>0.88 (0.38, 2.01)</td>
<td>0.759</td>
</tr>
</tbody>
</table>

Data are presented as n (%) unless otherwise stated. An exacerbation was defined as the presence of two major symptoms (dyspnoea, sputum volume, sputum purulence) for at least 2 consecutive days or a worsening of one major symptom together with an increase in any one minor symptom (sore throat, colds, fever without other cause, cough, wheeze) for at least 2 consecutive days. CI=confidence interval. FOR=formoterol. FAS=full analysis set. RR=risk ratio. TIO=tiotropium.
**Figure 1:** Per-protocol analysis of SGRQ-C total score after 26 weeks (A) LSM change from baseline in SGRQ-C total scores during treatment and (B) percentages of patients achieving the minimum clinically important difference (≥4 units) in SGRQ-C score after 26 weeks.

CI = confidence interval. FOR = formoterol. FAS = full analysis set. LSM = least squares mean. PPS = per-protocol set. SGRQ-C = St George’s Respiratory Questionnaire-COPD. TIO = tiotropium. ns = not significant. @ p<0.05
Figure 2: Per-protocol analysis of TDI total score (A) TDI total score (LSM) after 26 weeks and (B) percentages of patients achieving the minimum clinically important difference (≥1 units)

CI=confidence interval. FOR=formoterol. FAS=full analysis set. LSM=least squares mean. PPS=per-protocol set. TIO=tiotropium. TDI=transition dyspnoea index. ns=not significant. #p<0.01
Figure 3: Time to first moderate or severe COPD exacerbation up to Week 26 (FAS and PPS)

FOR=formoterol. FAS=full analysis set. PPS=per-protocol set. TIO=tiotropium