Contamination of bronchoscopes is well described.1–3 However, while cleaning and disinfecting bronchoscopes are clearly described in standardisation documents,1–3 the performance of a control sample prior to bronchoscopy is not suggested.4 5 Here, we offer an argument for such a procedure, supported by our experience with a 2-year-old boy with cystic fibrosis who underwent flexible bronchoscopy and bronchoalveolar lavage (BAL).

The bronchoscope in question had been used on a previous case on the same list, then supposedly cleaned and decontaminated, prior to reuse. We performed a ‘control lavage’, by suctioning sterile 0.9% NaCl through the instrument channel, before the boy’s procedure. However, it was only afterwards that the bronchoscopist noted the cloudy appearance of the control sample, suggestive of contamination. Subsequent investigation determined that the scope had not been adequately cleaned, due to human error, despite availability of appropriate equipment and standards.

BAL samples from the first case on the list, the control sample, and the index case were positive for *Haemophilus influenzae*. Molecular typing demonstrated that the *H influenzae* from the first case, and the control sample, were identical, but distinct from that found in the index case. The patient was pyrexial and coughing within 24 h of the procedure. The symptoms gradually resolved over 6 weeks, while on broad-spectrum antibiotic cover.

Our case suggests potential benefits of performing a simple ‘control lavage’. First, a contaminated bronchoscope will result in ‘false-positive’ BAL results. The control BAL sample is the only way to detect this error and avoid inappropriate treatment. Second, the BAL culture results may be ‘true-positives’, with the pathogen flushed into the patient’s airways during lavage. This is an iatrogenic infection and a gross medical error. Left undetected the error can be repeated in multiple patients, on multiple lists. Obtaining a control BAL provides an opportunity to limit ‘outbreaks’ of bronchoscope contamination to one list. Finally, where gross contamination is discovered, it will be possible to halt the procedure, thus avoiding the nosocomial infection. These recommendations may not be relevant to adult patients undergoing diagnostic bronchoscopy for assessment of lung cancer.

Barry Linnane,1,2,3,4 Donna Clarke,2 Paula Murray,2 Niamh O’Sullivan,6 Colum Dunne,6 Paul McNally2,4,7
1Cystic Fibrosis Unit, University Hospital, Limerick, Ireland
2National Children’s Research Centre, Dublin, Ireland
3Graduate Entry Medical School and Centre for Infections in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland
4Study of Host Immunity and Early Lung Disease in CF (SHIELD CF), Dublin, Ireland
5Department of Surgery and Anaesthetics, Our Lady’s Children’s Hospital, Dublin, Ireland
6Microbiology Department, Our Lady’s Children’s Hospital, Dublin, Ireland
7Department of Paediatric Respiratory Medicine, Our Lady’s Children’s Hospital, Dublin, Ireland

Correspondence to Dr Barry Linnane, Cystic Fibrosis Unit, University Hospital, Limerick, Ireland; barry.linnane@hse.ie

Acknowledgements The authors wish to acknowledge funding received from the National Children’s Research Centre, Crumlin, Dublin 12.

Contributors BL and PM conceived the study, conducted the data collection and drafted the manuscript. BL takes responsibility for the overall content as guarantor. DC and PM conducted data collection and contributed to critical revision of the manuscript. CD contributed to critical revision of the manuscript. NO conducted data collection.

Competing interests None declared.

Patient consent Obtained.

Provenance and peer review Not commissioned; internally peer reviewed.


Received 18 May 2015
Accepted 21 May 2015
Published Online First 16 June 2015
Thorax 2015;70:990.
doi:10.1136/thoraxjnl-2015-207319

REFERENCES