CORRESPONDENCE

The 6-min walk test in patients with COPD: walk this way!

As the co-chairs of the joint American Thoracic Society/European Thoracic Society (ATS/ERS) task force on field exercise testing we noted with interest the work by Beekman et al., who describe reference values for a 6-min walk test (6MWT) performed around a 10 m course. These authors have previously shown that walk distances on this track provoke a significantly shorter distance than on the course consistently recommended in guidelines in patients with COPD.2 This protocol deviation does not represent a conventional 6MWT,3 and we suggest should be renamed to avoid confusion. Importantly, it remains unclear whether other important ‘benchmark values’ such as the minimal important difference (MID) and the distance below which survival is affected can simply be transposed to the 10 m-6MW. We appreciate that space is an important constraint in many clinical settings, however we believe there are robust tests of walking performance that are conducted over a course shorter than 30 m, such as the incremental shuttle walking test.4–6 and the 4 m gait.7–10 It is currently unclear what this variant adds to this existing repertoire of field based exercise tests.

While we appreciate the test is conducted within 6 min, it does not accurately reflect current guidance on standard performance of the 6MWT in terms of track length. We would encourage researchers and clinicians to conduct the 6MWT as indicated in international guidelines.1 For clarity, we would propose to label this test as 10 m-6MW or comparable alternative. In addition we want to alert readers to the fact that for this version of the test little is known about the validity, reliability, responsiveness and its place in an end-point model of outcomes.

Sally J Singh,1,2 Martijn A Spruit,3,4 Thierry Troosters,5,6 Anne E Holland7,8,9
1Centre for Exercise and Rehabilitation Science, University Hospitals Leuven, Leuven, Belgium
2School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
3Department of Research and Education, CIRO+, Centre of Expertise for Chronic Organ Failure, Horn, The Netherlands
4Faculty of Medicine and Life Sciences, REVAL-Rehabilitation Research Center, BIOMED-Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
5Respiratory Rehabilitation and Respiratory Division, University Hospital Leuven, Leuven, Belgium
6Faculty of Kinesiology and Rehabilitation Sciences, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
7Institute for Breathing and Sleep, Austin Health, Melbourne, VIC, Australia
8Department of Physiotherapy, La Trobe University, Melbourne, VIC, Australia
9Department of Physiotherapy, Alfred Health, Melbourne, VIC, Australia

Correspondence to Dr Sally Singh, Centre for Exercise and Rehabilitation Science, University Hospitals of Leicester NHS Trust, Leicester LE3 9QP, UK; sally.singh@uhl-tr.nhs.uk

Competing interests None.
Provenance and peer review Not commissioned; internally peer reviewed.


REFERENCES

Thorax 2015;70:86.
doi:10.1136/thoraxjnl-2014-205928