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ABSTRACT
Over the last decade, technological advances have
revolutionised efforts to understand the role played by
microbes in airways disease. With the application of ever
more sophisticated techniques, the literature has become
increasingly inaccessible to the non-specialist reader,
potentially hampering the translation of these gains into
improvements in patient care. In this article, we set out
the key principles underpinning microbiota research in
respiratory contexts and provide practical guidance on
how best such studies can be designed, executed and
interpreted. We examine how an understanding of the
respiratory microbiota both challenges fundamental
assumptions and provides novel clinical insights into
lung disease, and we set out a number of important
targets for ongoing research.

INTRODUCTION
While efforts to identify microbes associated with
airways disease are not new, the sophistication of
both our conceptual understanding of these systems
and the approaches used to characterise them have
increased dramatically over the last decade. A point
has now been reached where complex microbial
systems in the airways and the manner in which
they can influence clinical course increasingly rep-
resent a central consideration when trying to
understand and treat respiratory disease. However,
with the application of ever more sophisticated eco-
logical tools, recent additions to the literature have
become less accessible to the non-specialist reader.
Furthermore, in order to have the greatest benefi-
cial impact, respiratory microbiota studies must be
driven by clinical questions, and the insight gained
linked directly with improvements in clinical prac-
tice. In this article, we set out the key principles
underpinning microbiota research in clinical con-
texts, as well as providing practical guidance on
how best such studies can be designed, executed
and interpreted. We examine how an understanding
of the respiratory microbiota both challenges fun-
damental assumptions and provides novel clinical
insights into lung disease.

WHAT IS MEANT BY MICROBIOTA?
In simplest terms, ‘microbiota’ can be defined as
the microbes associated with a particular context.
For example, the microbes present in the nasophar-
ynx of healthy individuals can be referred to as the
healthy (or commensal) nasopharyngeal micro-
biota. This definition covers all forms of microbe
including viruses, bacteria, fungi, archaea and non-
fungal microscopic eukaryotes. Most studies of
microbiota have focused on their bacterial

component, and it is to this that we refer when
using the term within this article. Unlike traditional
microbiological approaches that aim to identify
individual pathogens, microbiota analysis charac-
terises all of the bacterial species present, both in
terms of their identities and relative abundance.
While used increasingly frequently in the literature,
microbiota is only one of a number of terms that
have been used to describe human-associated
microbes (see box 1).

MICROBIOTA DESCRIBED IN RESPIRATORY
CONTEXTS
While the term microbiota has been used for
decades, clinical and scientific interest in
human-associated microbiota is more recent and
has been further stimulated by projects such as the
Human Microbiome Project and Metagenomics of
the Human Intestinal Tract consortium (METAHit).
The number of studies on respiratory microbiota
has expanded massively, with PubMed showing
more ‘hits’ in papers published from 2012 onwards
than the total from all previous years, with micro-
biota analyses having now being performed in
many different respiratory contexts. These studies
can be grouped into those focusing on regions of
the airways that are colonised by commensal popu-
lations under normal circumstances, such as the
nasopharynx, and those thought to be free from
substantial microbial colonisation in healthy indivi-
duals, such as the distal airways. Further, these con-
texts have been analysed in both healthy airways
and those affected by acute and chronic infection.
With such a rapidly expanding body of literature, a
detailed description of findings is beyond the scope
of this article, although a number of comprehensive
reviews exist.1 2

WHY ANALYSE THE MICROBIOTA?
From a clinical perspective, the value in microbiota
analysis may not be immediately clear. Historically,
efforts to characterise the airway microbiota were
driven by the need to augment information pro-
vided by conventional culture-based microbiology.
Based on the rationale that any microbes present in
the lower airways represented potential aetiological
agents, there was a clear need to detect microbes
that might be refractory to culture in vitro. Here,
there was an expectation that parallels would exist
with the culture bias observed in natural environ-
mental microbiology. Indeed, early analyses of
samples from patients with cystic fibrosis (CF)
sputum revealed many bacterial species that had
not been reported through standard diagnostic
microbiological culture-based approaches.3 By
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extension, while it is difficult to speculate on the importance of
all novel species identified in airways disease, the common
detection of strict anaerobes in CF sputum has led to a
re-evaluation of their potential to contribute to chronic lung
infection.4 5

As the complexity of airway microbiota was revealed, it
became apparent that detailed microbial data could be inform-
ative beyond the simple detection of potentially pathogenic
species. One important concept took shape, namely, that the
pathogenic potential of a microbiota containing a diverse mix of
species can be quite distinct from, and in some cases signifi-
cantly greater than, that of its individual members. This is due
in part to the substantial influence that inter-species interactions
can have on the expression of the virulence traits of bacteria
when resident within polymicrobial communities.6 This insight
led to an understanding that the pathogenic potential of any
single bacterial species requires a consideration of the wider
microbial context.7

The application of conceptual frameworks from microbial
ecology also suggested that the composition of airway micro-
biota was to a large extent a reflection of the physicochemical
characteristics of airway niches.7 Bacterial species differ in their
need for resources and physical conditions in order to grow and
different environmental niches therefore select for the growth
of certain microbes. It is interesting to speculate that the differ-
ential distribution of infections within the respiratory tract, such
as the more common finding of upper, not lower, lobe TB infec-
tion, may result from such a phenomenon. Assessing airway

microbiota may therefore provide insight into the physical
characteristics of the airways, and by extension the degree of
disease progression and likelihood of colonisation by a particu-
lar pathogen.

KEY MICROBIOTA DESCRIPTORS
In addition to determining the identities and relative abundance
of bacterial species present within a respiratory context, other
features of the microbiota can be informative, including rich-
ness, evenness and dominance (box 1). In many cases, these
measures have been shown to be clinically informative. For
example, clinical measures of disease in non-CF bronchiectasis
correlate more closely with samples characterised according to
dominant species identity than to conventional presence/absence
detection of clinically relevant species,5 8 and represent a pre-
dictor of microbial community response to antibiotic therapy.9

Further, species richness measures have been shown to have a
significant inverse correlation with disease severity in a number
of conditions, including CF, bronchiectasis and COPD.10

HOW ARE AIRWAYS MICROBIOTA CHARACTERISED?
The DNA sequencing technologies that allow characterisation of
complex microbial systems have evolved rapidly, with individual
sequencing platforms quickly superseded.11 However, both the
general principles on which DNA sequencing technologies are
based and the key considerations when applying them to
respiratory samples have remained relatively constant.

When characterising the microbiota, there are three principal
considerations: (A) obtaining representative samples, (B) gener-
ating accurate microbiota profiles and (C) analysing the resulting
data in a manner that is informative and relevant.

Obtaining appropriate samples
Respiratory material can be obtained in several ways. It is
important to consider the ease, safety and reproducibility of
each sampling technique in relation to microbiota profiling,
rather than its utility for clinical investigations or other types of
analysis. In addition, the issue of contamination requires careful
consideration.12 Obtaining samples from the lower airways
involves passage through regions that are typically heavily colo-
nised by microbes such as the nasopharynx and while protected
brush specimens obtained at bronchoscopy can be used to limit
the introduction of upper respiratory tract microbes, this
approach may not always be appropriate.

Regardless of the strategy used to obtain material from an
airway niche, the effect of heterogeneity in sample composition,
both spatial and temporal, must be considered. For example,
two sputa collected consecutively may vary considerably in
terms of their composition,13 a factor particularly important in
cross-sectional studies.

Generating microbiota profiles
Once sample material has been obtained, there are a number of
other stages required before generation of a microbiota profile.
The first major step is the extraction of nucleic acids. The ease
with which cells of different bacterial species lyse differs greatly;
consequently, where stringent cell disruption is not performed,
the microbiota data obtained can be distorted with an over-
representation of those species most easily lysed (including
many Gram negative species) and under-representation of more
structurally resilient species (often Gram positive species).
A number of studies have examined this topic,14 15 with the
inclusion of enzymatic and physical sample disruption (eg, via
bead-beating) commonly considered necessary.

Box 1 Glossary

▸ Dominance—the extent to which one or more species is
numerically dominant within the microbiota

▸ Dysbiosis—an imbalance in the microbes present in a
particular niche due to a change in conditions

▸ Evenness—the degree to which the species present are of
equal abundance

▸ Metagenome—the genetic information of the whole
microbiota, usually obtained by whole genome sequencing

▸ Microbiome—the totality of the microbes with their genes
that are harboured by the microbiota and the milieu in
which they interact

▸ Microbiota—all the microbes that are found in a particular
niche or region

▸ Microflora—a now defunct term, broadly equivalent to
microbiota

▸ Phylogenetic—relating to the evolution of a species or
group of organisms

▸ Resilience—the rate at which a microbial community returns
to its original composition after being disturbed

▸ Resistance—the degree to which a community withstands
change in response to perturbation

▸ Richness—the number of taxa present in a sample at a
particular phylogenetic level

▸ Similarity measures—a statistical tool to determine the
similarity between two profiles based on a given algorithm

▸ Succession—the gradual and orderly process of change in a
microbial community brought about by the progressive
replacement of its members

▸ Taxa—a taxonomic category, such as species or genus
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Once nucleic acids have been extracted, a microbiota profile
can be generated. Most commonly, approaches involve the PCR
amplification of variable regions of the 16S rRNA gene using
primers that bind to flanking regions of conserved sequence.
Here, the selection of appropriate PCR primers is fundamental
to the usefulness of the data obtained.16 An alternative to ana-
lysing amplified 16S rRNA gene analysis is to generate metage-
nomic data by sequencing all DNA derived from a sample
(known as shotgun sequencing) and identifying 16S rRNA gene
sequences, or other informative sequences, within the dataset.17

This technique has been applied successfully in the analysis of
CF sputum.18 While shotgun sequencing has not been applied
widely, it has the advantage of providing information on the
presence of bacteria, archaea, DNA viruses and eukarya, as well
as their potential functionality.

Data processing
Before microbiota sequence data can be analysed, it must be
processed to minimise spurious signal and allow the comparison
of profiles with the minimal introduction of bias. Data process-
ing can be divided into a number of stages.

Removal of spurious signal
All PCR and sequencing techniques inevitably introduce sources
of spurious signal, including amplicon fragments, chimeric
sequences (single sequences originating from two organisms)
and misreads. It is essential that prior to downstream analysis,
data are processed to remove these factors and there are a
number of publically available pipelines that can be used to
achieve this, including Qiime19 and mothur;20 for further detail
see.11

Contamination
Contamination of the analysis pathway can be introduced at any
stage. In particular, contamination present in analytical reagents
is commonly detectable in ‘no template’ controls used for PCR
amplification prior to sequencing. Here, the contribution of
such contamination to the total signal obtained is commonly
inversely proportional to the amount of nucleic acids derived
from the sample and, by extension, the sample biomass.
Sequence data obtained in such controls must be carefully com-
pared with data from clinical samples.

Data normalisation
Processing and analysis of clinical samples, even aliquots of the
same sample, will give rise to different DNA yields and purities
and, in turn, different numbers of sequences will be obtained.
When assessing the composition of microbiota, it is important
that the number of sequences on which each profile is based (or
the ‘depth of sequencing’) is comparable. It is therefore
common practice to normalise the number of sequences per
sample to the lowest number obtained for any sample within a
set. Consideration must also be given to the depth of sequencing
that is most appropriate; sufficient sequences must be obtained
to avoid sampling bias, but sequencing to too greater depth will
provide little additional information, and only increase costs
and processing time. Obtaining pilot data that provide informa-
tion on the level of diversity present in a particular niche is
helpful in determining initial sequencing depths, with rarefac-
tion of the sequence data obtained allowing the proportion of
total diversity that is represented within a given microbiota
profile to be assessed.

Taxa identification
Once spurious signal has been removed and profiles normalised,
the identities of the microbes present within the samples can be
determined. This is achieved by comparing the sequencing
obtained to a reference database. These databases can either be
public repositories such as the National Institutes of Health
sequence database, Genbank (https://www.ncbi.nlm.nih.gov/
genbank/) or an aligned sequence such as Greengenes (http://
greengenes.lbl.gov/cgi-bin/nph-index.cgi), SILVA (http://www.
arb-silva.de/) or RDP-II (http://rdp.cme.msu.edu/). Aligned
sequence databases are often preferred as they are subject to
lower levels of misidentification due to poor quality sequences
and inaccurate annotation compared with public repositories.

Differentiating resident and transient taxa
In addition to bacteria resident within that niche being sampled,
respiratory samples also contain microbes that have entered the
lower airway through inhalation or translocation from adjoining
regions, or that have been introduced during sample collection.
While efforts can be made to limit the contribution of microbes
that become associated with the sample as it passes through the
upper respiratory tract, determining whether particular species
are resident in the lower airways or present only transiently is
more challenging. Here, analytical techniques have now been
developed that allow differentiation between ‘core’ species
(those that are commonly present in a patient group and in high
abundance) and ‘satellite’ species (those that are present only
rarely and at low abundance where detected) based on the distri-
bution of sequences within a particular sample collection.21

DATA ANALYSIS
There are many different approaches that can be taken to micro-
biota data analysis, with the particular strategy employed
depending on the clinical question posed. However, the com-
plexity of microbiota data, even before other factors such as
host immunity and treatment are taken into account, means that
sophisticated analytical approaches are typically required.
Current techniques borrow heavily from environmental micro-
biology and allow factors such as the relationship between vari-
ation in composition and clinical measures to be assessed.
Detailed review of microbiota analysis methods is available else-
where;22 however, we summarise key concepts below.

In order to reduce the influence of rare or overabundant
species, a range of mathematical transformations are available to
normalise data.23 Once sequencing data have been transformed,
there are a number of ways in which complex microbiota can be
described using relatively accessible metrics. For example, rich-
ness is a commonly used measure that refers to the number of
taxa, whether defined as species, operational taxonomic units
(OTUs) or other phylogenetic classifications, which can be
detected in a sample. While simple counts of the number of
species present can be influenced by the depth to which sequen-
cing has been performed, measures that take this into account,
such as Chao124 and ACE25 can be employed. Importantly, rich-
ness measures do not take into consideration the abundance of
different taxa. In contrast, diversity measures combine richness
metrics with a measure of the evenness of abundance of the dif-
ferent species present. Many different diversity measures exist,
each reflecting particular microbiota characteristics. Examples of
commonly used diversity measures include the Shannon
index,26 which ranges from 0 for communities with only one
taxon to high values for communities with many different taxa
of low relative abundance, and the Simpson index27 that ranges
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from 0 (all taxa are equally abundant) to 1 (one taxon domi-
nates the community completely). A detailed description of
α-diversity indices and application in microbiome research can
be found in the work by Li et al.28

In addition to describing the characteristics of the microbiota
in an individual sample, it can be useful to compare the
characteristics of multiple different samples. Inter-sample mea-
sures of similarity or dissimilarity are referred to as β-diversity
and, again, can be based on many different facets of microbiota
composition.

For example, similarity measures can be based on the pres-
ence/absence of particular bacterial species (eg, Sørenson and
Jaccard Similarity Indices) or on the abundance of those bacter-
ial species (eg, Bray-Curtis Dissimilarity Index). Further, the
inter-sample similarities between multiple samples can be visua-
lised using ordination techniques such as principle coordinate
analysis and non-metric multi-dimensional scaling. Hierarchical
clustering can also identify groups of samples with similar
microbiota. The significance of differences between clusters can
be determined using the analysis of similarity or multivariate
analysis of variance (eg, NPMANOVA, PERMANOVA). There
are numerous methods for examining relationships between
observed clusters and clinical metadata, for example, redun-
dancy analysis, correspondence analysis, linear discriminant ana-
lysis and regression models. Methods such as similarity
percentages analysis can also determine which bacterial species
contribute most to observed differences between clusters.

The application of many of the techniques described here to
an illustrative set of respiratory samples is shown in figure 1.

Given the complexity of microbiota analyses and the range of
analytical tools available, it is recommended that a bioinformati-
cian with specialist expertise in microbial ecology is consulted
when preparing an analytic pipeline.

PATHOGENICITY, CAUSALITY AND CLINICAL CORRELATES
Associations between microbiota and airways disease are increas-
ingly being reported. An example is the link between the com-
position of bronchial microbiota with the degree of bronchial
hyper-responsiveness among patients with suboptimally con-
trolled asthma.29 Here, it has been postulated that asthma and
allergy represent interplay among consequences of abnormalities
in microbial colonisation, development of immune function and
encounter with agents infecting the respiratory tract, especially
at a young age.30 While many such significant associations have
been observed, determining causality is challenging. An illustra-
tive observation is the inverse relationship between increasing
disease severity and decreasing diversity.10 Some authors have
suggested that the observed link between disease severity and
diversity represents a causal relationship (perhaps overgrowth
by a pathogen could result both in reduced diversity and
increased severity); however, another explanation is that as
severity increases so too does antibiotic treatment burden. This
antibiotic burden represents a substantial selective pressure
acting to exclude all but the species able to grow in the presence
of the antibiotics administered.

So how best can causality be assessed? First, an appropriate
conceptual framework is needed, and this requires a reconsider-
ation of some of the concepts surrounding infection and disease
that predate microbiota analysis. The traditional approaches are
still based on Koch’s postulates. More recently, these have been
modified to make them appropriate for examining the potential
role of genes and their products in the pathogenesis.31

However, factors related specifically to microbiota must also be
taken into consideration. Here, rather than the presence of a

particular pathogen, disease may result from the activity of a
consortium of species. For example, how do we define an
oropharyngeal-associated bacterial species that, while benign
when present in isolation, triggers disease when present with
cocolonising pathogens such as Pseudomonas aeruginosa
species?6 Only when such relationships are understood can the
extent to which correlations between microbiota data and clin-
ical outcome are causal be assessed.

In addition to conceptual frameworks, practical systems to
assess the nature of associations identified in vivo are required.
These systems will include in vitro models of microbe–host cell
interactions, as well as animal models of polymicrobial infec-
tions. Using these approaches, the mechanistic basis of observed
associations can start to be unravelled.

MICROBIOTA DYNAMICS AND CHANGES IN CLINICAL
STATUS
Airway microbiota change in response to a range of factors,
most notably host immune response and treatment.32 The
dynamic nature of microbiota mean that cross-sectional studies
can be misleading unless analysed with care, with longitudinal
studies most appropriate when assessing relationships between
microbiota composition and clinical factors.33 Of particular clin-
ical interest are the changes that take place during the establish-
ment of infective microbiota, the impact of antimicrobial
therapy and the changes in microbiota associated with disease
progression. In each case, identification of the mechanisms that
underpin these processes may offer the opportunity for clinical
intervention. Here, there are two important ecological princi-
ples that help us understand clinically important processes.

Succession: the process of change in microbiota membership
over time. Succession can take several forms, and differs
depending on whether it takes place within a niche that has not
been previously colonised (eg, colonisation of the lower airways
in a child with CF) or in a niche where a commensal microbiota
is undergoing dysbiosis (eg, the transition that might occur in
the oropharyngeal microbiota as a result of H1N1 infection34).
Importantly, succession is non-random, being influenced by
factors such as the nature of the change in the airway environ-
ment and interactions between microbes.35 This ordered basis
of succession offers the tantalising prospect of the prediction of
clinically important events, such as pathogen acquisition.

Resistance/resilience: to understand the effect that perturba-
tions such as antibiotic therapy have on airway microbiota, as
well as the stability shown by certain respiratory microbiota
over long periods, the principles of resistance (insensitivity to
disturbance) and resilience (the rate of recovery after disturb-
ance) are essential. Determining the extent to which a micro-
biota is resistant and resilient can allow predictions to be made
regarding the magnitude of change that an intervention is likely
to have, and the period for which microbiota composition will
remain disturbed before the community returns to its original
composition or a new stable composition is established. Such
analyses therefore provide a potential basis for the design of
interventions. These concepts are reviewed in detail
elsewhere.36

PHYLOGENETIC STRATA
In clinical practice, the phylogenetic unit used most commonly
is species, followed closely by strain, classifications that trad-
itionally have been based primarily on phenotypic or morpho-
logical characteristics. Strain is a unit that reflects subspecies
differences, and these can have significant clinical implications
on epidemic or antibiotic resistant strains. Finally, there are the
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broad classifications that are used primarily as a guide when
selecting antibiotics, for example, Gram positive/negative and
‘atypical’. However, when describing a respiratory microbiota,
these phylogenetic strata may be inappropriate. In microbiota
analysis, differentiation of bacteria is based typically on
sequence differences in regions of DNA. In some cases, species
will be indistinguishable over the region analysed, while in other

instances, there can be substantial sequence divergence in popu-
lations conventionally considered to represent a single strain. A
further consideration is the ability of 16S rRNA gene-based
techniques to distinguish between species with very different
pathogenic potential. For example, in the context of paediatric
respiratory infection, Haemophilus influenzae is considered an
important pathogen, whereas Haemophilus haemolyticus is

Figure 1 α- And β-diversity analysis based on a simulated data set that includes six samples from adult cystic fibrosis (CF) patients, six samples
from paediatric CF patients and six healthy controls. Shown are a number of approaches that could be employed to assess the composition of the
samples in the different subsets, determine the extent to which differ significantly and identify bacteria that contribute substantially to these
differences. (A) Stacked bar plots showing the relative abundance of genera detected in each of the samples. (B) α-Diversity measures: genus
richness, Shannon diversity index and Simpson index calculated for each of the samples. (C) Hierarchical cluster analysis showing the similarity of
the microbiota in each sample using the Bray Curtis similarity measure. Red lines indicate no significant dissimilarity, with black lines indicating
significant dissimilarity, as calculated using the SIMPROF test. (D) Non-metric multidimensional scaling using Bray Curtis similarity measure. Ellipses
indicate thresholds of microbiota similarity. (E) Principal component analysis showing the distribution of the microbiota profiles. Eigen value vectors
are included that indicate the contribution of key genera to the observed distribution. (F) Similarity percentages (SIMPER) analysis showing the
contribution of different genera to the dissimilarity between first adult CF samples and paediatric CF samples, and then between adult CF samples
and healthy controls. Shown are the average dissimilarity between sample groups with the inclusion of each genus, the contribution genera make to
dissimilarity and the mean abundance of each genus in the two sample groups carriage return.

The set of six panels provide an overview of approaches to objectively assessing differences in microbiota composition between samples from
different patient groups. The stacked bar plots shown in (A) provide an overview of the relative abundance of genera detected in the 18 samples
analysed. It can be seen that genus richness in the samples from adult CF patients is lower than in the paediatric CF patients or the healthy
controls, with a high relative abundance of Pseudomonas. It can also be seen that while Haemophilus and Staphylococcus are relatively prevalent in
the paediatric samples, healthy controls tend to be dominated by Streptococcus and Prevotella species. The genus richness, Shannon index and
Simpson index diversity scores plotted in (B) indicate that samples from healthy controls tend to have more genera detected and that these samples
have a more even distribution of abundance compared with paediatric CF samples and, to a greater degree, adult CF samples. The hierarchical
cluster analysis shown in (C) indicates that the composition of the three groups of samples is distinct, that is, samples within the three subgroups
are more similar to each other that to samples in other subgroups. The black lines indicate cluster of samples that are significantly different, as
determined by SIMPROF analysis. The analysis of similarity (ANOSIM) score assesses the significance of the differences between the three sample
groups. (D) Shows non-metric multidimensional scaling using the Bray Curtis dissimilarity measure. Here, the closer samples are together, the more
similar their composition. It can be seen that the three sample groups cluster together, and that there are further subgroups of samples within the
adult CF and paediatric CF sets, with percentage similarity thresholds shown by ellipses. In (E), principle component analysis has been used to
project the sample over two axes based on variance in their composition. Again, the samples cluster according to group. Vectors have been overlaid
that indicate that Pseudomonas contributes most to the separation of adult CF samples from paediatric CF sample or healthy controls along the x
axis, whereas Staphylococcus, Haemophilus and Moraxella spp are more prevalent in paediatric samples, and Prevotella and Veillonella species are
more prevalent in healthy controls. The contribution of the detected genera to the differences in microbiota composition between each of the three
sample groups was assessed by SIMPER analysis, with the output shown in (F). Genera are listed in order of their contribution to dissimilarity. In
this way, the bacteria that drive differences between microbiota in different clinical contexts can be determined objectively.
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considered commensal. However, obtaining satisfactory differ-
entiation of these species based on 16S rRNA gene sequences
derived from typical sequencing analysis is not possible.37

In order to separate bacterial species in a meaningful way
based on sequence data, thresholds of sequence similarity are
used. These thresholds are used to define what are referred to as
an OTU. For example, although a level of 97% sequences

similarity is commonly applied to 16S rRNA gene sequence
data (broadly relating to the species level), traditional strain or
species classifications show different degrees of sequence vari-
ation. It is therefore important to consider the extent to which
the analytical approach used is capable of differentiating particu-
lar bacteria of interest, select analytical strategies appropriately
and be aware of the limitations of data generated to provide

Figure 1 Continued.
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high-level bacterial identification. Further, it may be most appro-
priate to consider microbiota data at a higher phylogenetic
level, for example, family or phylum, which is not commonly
considered in clinical contexts.

TOWARDS CLINICAL INSIGHT
To date, the analysis of respiratory microbiota has been predom-
inantly in the sphere of academic research, with direct applica-
tion to clinical practice yet to take place on a significant level.
This situation is changing with increasing efforts to link micro-
biota data with clinically applicable metrics. However, determin-
ing the membership of the airway microbiota is only a first step
in understanding its interaction with the host and role in both
health and disease. Bacteria have many differentially expressed
traits relating to virulence or pathogenicity and there is growing
interest in determining not just what bacteria are present, but
what they are doing. There are a number of different ways in
which bacterial behaviour can be assessed, including the analysis
of gene transcription (transcriptomics), protein production (pro-
teomics) and metabolic activity (metabolomics). In each case,
technological advances are providing a basis for assessing these
processes within highly complex microbiota, and their applica-
tion in respiratory contexts continues to expand.38–40

With the rapid expansion of airways microbiota analysis, new
applications for the data that they generate are being identified.
As above, the composition of the airway microbiota reflects the
characteristics of the airway environment, with a continuum
between those observed in healthy individuals and in disease.
This relationship presents the opportunity to use microbiota
data to both track disease progression and assess the efficacy of
treatments that aim to retard it, or to reverse underlying defects.

A further important area of application is the assessment of
antibiotic impact. The danger of antibiotic therapy promoting
resistance in commensal populations has long been recognised;
however, such interventions will also promote changes in micro-
biota composition, for example, by conferring a selective advan-
tage for species that have a natural tolerance for the agent being
used. Such species may be pathogenic and, while unable to
compete for niche space under normal conditions, are presented
with an opportunity to expand during therapy. Characterisation
of the effect of therapy on the microbiota, in addition to the
intended target, is therefore increasingly considered in trials.

KEY RESEARCH QUESTIONS
As research into the airway microbiome expands, a number of
important questions present themselves. For example, to what
extent is the altered airway microbiome present a cause or effect
of disease? How do treatments, such as steroids, antibiotics or
inhaled medication, affect the airway microbiome and what are
the implications of this for disease? Can the airway microbiome
be manipulated to change prognosis? Are changes in micro-
biome composition or behaviour predictive of lower respiratory
tract infection? And how best can we standardise airways sam-
pling and analysis to provide comparable datasets and protocols
for their interpretation? The challenge now facing researchers is
to use recent technological advances to answer these and other
pressing clinical questions.

CONCLUSIONS
The concept of airway microbiota analysis is relatively new and
we are only now starting to move beyond an initial phase of
simple cataloguing the identities and relative abundances of
microbes associated with particular conditions. The number of
important clinical correlations that link facets of airways

microbiota with markers of disease progression and clinical out-
comes are increasing rapidly, with such investigations starting to
be used to provide prognostic insight. We are entering a new
era, with researchers trying to determine the mechanisms that
underpin these associations with a view to identifying new
therapeutic targets. However, with technical advances being
achieved at an ever greater rate, it is of fundamental importance
that this research continues to be driven by important clinical
questions, with the aim of deriving outcomes that can be trans-
lated for direct patient benefit.
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