and non-smokers. The socio-cultural background needs to be considered when running public health campaigns due to differences in perception and responses to GHWL. Investigating the awareness of risks such as blindness, that have a low knowledge score but a high deterring impact, provides the chance to create a tailored approach when addressing this desensitisation.

P289 CARBOXYHAEMOGLOBIN LEVELS IN EMERGENCY DEPARTMENT PATIENTS: AN IMPORTANT TOOL IN VALIDATING SMOKING HISTORY AND DETECTING "MISSED SMOKERS"

RW Fowler. Queen’s Hospital, Romford, UK

Introduction Blood gas analysers in emergency departments (ED) routinely report carboxyhaemoglobin (COHb) levels, but unless environmental carbon monoxide poisoning is suspected, measurements are ignored, particularly when blood gases have been performed to check acid-base status. Raised initial COHb levels are likely to indicate highly nicotine dependent smokers needing specialist support to quit.

Methods Data were obtained from 824 samples analysed in the ED in June 2013. There were 82 samples with COHb levels >2.0%, including 66 from 55 identifiable patients. Only the first measurements were used. Records were requested and checked for diagnosis and smoking history.

Results 42 records were retrieved. The highest initial COHb level was 13.5%; 15 had levels >4.5%. There were eight confirmed COPD and two possible cases. Eleven patients presented with drug and alcohol poisoning. Table 1 lists diagnoses.

Conclusion Three of 28/42 (66.7%) were current tobacco smokers; in 14 (33.3%) pack-years could be estimated. Most had underlying mental health problems.

Screening and treating sleep apnoea

P290 VALIDATION OF PREOPERATIVE SCREENING ALGORITHM FOR OBSTRUCTIVE SLEEP APNOEA

VM Macavei, J Mitic, M Berger, OE Mohr, TC O’Shaughnessy. Newham University Hospital, Barts Health NHS Trust, London, UK

Background Obstructive sleep apnoea (OSA) has been previously reported as a major risk factor for perioperative adverse events. Identifying patients with undiagnosed OSA can potentially have an impact on morbidity costs.

Aim To validate a previously reported screening tool for surgical patients suspected of having OSA.

Method A prospective study was performed in a university hospital between 1st Dec 2013 and 1st June 2014. An easy to use screening tool (STOP BANG) has been addressed to all patients suspected of having OSA.

Results A total of 102 patients have been included, 57 males (55.8%) and average age 50.8 ± 14 years. 52 patients (50.9%) have been diagnosed with OSA out of which 29 patients (28.4%) had severe OSA (defined as dip rate ≥ 30 events per hour).

Using logistic regression analysis, a STOP BANG score of ≥ 3 had a sensitivity of 94.2% and specificity 72% with a positive predictive value of 77.8% and a negative predictive value of 92.3% in detecting OSA patients.

Conclusion We have identified a high incidence of OSA of 50.9% in our sleep study population. We have validated STOP BANG questionnaire to be a useful predictor of OSA with a sensitivity of 94.2% and specificity 72%. This can be used during pre anaesthetic assessment indicating the requirement of chest clinic referral for sleep study at a score of ≥ 3.

REFERENCES
