The 6MWT had medium correlations with SF36 MCS (rs = 0.372, p > 0.03) and SF36 PCS (rs = 0.480, p > 0.004) and a strong correlation with the DASI (rs = 0.604, p > 0.0001). Moreover the Physical function component of SF36 (SF36PF) also had a strong correlation with 6MWT (rs = 0.541, p > 0.001). FEV1 showed a medium correlation with 6MWT (rs = 0.413, p > 0.19).

Conclusion Patients appear to estimate PA levels accurately with the DASI, with higher scores of estimated METs correlating with increased 6MWT distance. QoL appears higher in those patients of whom patients met the criteria for refractory asthma. The number of patients on antidepressants significantly decreased over the year from 17.61% (N = 25) to 10.71% (N = 12; p = 0.021). Depression on the HADS showed a non-significant reduction from 57.7% (N = 82) to 40.9% (N = 51; p = 0.27).

Conclusion This study demonstrates that the introduction of an asthma inreach service & ANS clinic has significantly improved asthma management, follow up according to BTS guidelines and reduced 30 day readmissions. A significant number of patients had evidence of poor compliance, poor inhaler technique, lack of WAMP which was addressed by the asthma team. A number of patients were more complex and required review in the difficult asthma clinic.

Abstract M3. Table of demographics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Median (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>45 (52)</td>
</tr>
<tr>
<td>FEV1 %</td>
<td>68.1 (87.4)</td>
</tr>
<tr>
<td>6MWT(metres)</td>
<td>380 (650)</td>
</tr>
<tr>
<td>SF36 PCS</td>
<td>33.1 (42.1)</td>
</tr>
<tr>
<td>SF36 MCS</td>
<td>50.2 (49.4)</td>
</tr>
<tr>
<td>DASI</td>
<td>22.3 (51)</td>
</tr>
</tbody>
</table>

Results

The 6MWT had medium correlations with SF36 MCS (rs = 0.372, p > 0.03) and SF36 PCS (rs = 0.480, p > 0.004) and a strong correlation with the DASI (rs = 0.604, p > 0.0001). Moreover the Physical function component of SF36 (SF36PF) also had a strong correlation with 6MWT (rs = 0.541, p > 0.001). FEV1 showed a medium correlation with 6MWT (rs = 0.413, p > 0.19).

Conclusion

Patients appear to estimate PA levels accurately with the DASI, with higher scores of estimated METs correlating with increased 6MWT distance. QoL appears higher in those patients who achieve a greater distance in their 6MWT, especially in relation to their physical function. FEV1 preservation also appears to correlate with improved 6MWT distances. Further investigation of PA in this population is warranted.
(N = 27; p = 0.023). Significant increases in QoL (p = 0.002) were also found on the Juniper QoL. FEV1 significantly improved with a mean score of 2.21 at baseline, increasing to 2.83 at one-year (p < 0.001). Multiple regressions showed that 25% of the variance in QoL was predicted by FEV1; however, depression and FEV1 combined explained 50.8% of the variance (p < 0.001).

Conclusions Multidisciplinary intervention led to effective improvement in well-being and lung function in patients with severe and difficult asthma. The improvements in QoL were predicted by both FEV1 and depression. We recommend supporting patients’ adaptation to life with severe asthma as an integrated function of the multidisciplinary approach. This approach can help minimise anxiety and depression symptoms, improve QoL and reduce the psychological impact upon physical symptoms.

Abstract M5 Table 1. Changes in lung function and psychological well-being across a one-year period of multidisciplinary intervention.

<table>
<thead>
<tr>
<th></th>
<th>Baseline (Mean Score)</th>
<th>One-Year Assessment (Mean Score)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HADS Depression</td>
<td>7.69</td>
<td>7.13</td>
<td>.192</td>
</tr>
<tr>
<td>HADS Anxiety</td>
<td>8.97</td>
<td>7.56</td>
<td>.023*</td>
</tr>
<tr>
<td>AQLQ (Juniper QoL)</td>
<td>3.20</td>
<td>4.09</td>
<td>.002*</td>
</tr>
<tr>
<td>FEV1</td>
<td>2.21</td>
<td>2.83</td>
<td>.000*</td>
</tr>
</tbody>
</table>

Introduction From 2012, the Quality Outcomes Framework (QOF) in Asthma was amended to include an objective assessment of a patient’s asthma control using the RCP 3 questions.

In the last month
- Have you had difficulty sleeping because of your asthma symptoms (including cough)?
- Have you had your usual asthma symptoms during the day (cough, wheeze, chest tightness or breathlessness)?
- Has your asthma interfered with your usual activities (for example, housework, work/school, etc.)?

Controlled asthma is defined as answering ‘no’ to all 3 questions.

Cegedim Ltd, who own the InPS Vision prescribing software, have access to anonymised QOF data and have used 150 GP practices which are selected to provide UK-wide representation. This has enabled an analysis to determine real-world levels of asthma control in primary care in the UK.

Methods Asthma patients were identified according to QOF business rules. Patients who had provided responses to the RCP 3 questions (during the period March 2012–February 2013) were selected. A subset of those who had been on the same medication for 12 months prior to that assessment were specified, defined as consistently prescribed the same medication at the time of assessment and 12 months prior.

Results A cohort of 19,582 asthma patients who had completed the RCP 3 question assessment during the study period with 12 months of consistent therapy was identified. One-quarter (25%) of patients were controlled (answered ‘no’ to all questions). For patients at BTS Step 1 (SABA only) and BTS Step 2 (ICS monotherapy), the proportion controlled was 28% and 27% respectively. For patients at BTS Step 3 and above (ICS and LABA in combination, including as separate inhalers) the proportion was 23% (see figure).

Conclusions Asthma control in primary care in the UK is poor with only 25% of asthmatics achieving control as defined by the RCP 3 questions; levels of control were consistent across BTS steps. Interventions to understand barriers and improve asthma control are warranted.

Abstract M6 Figure 1.

M6 LEVEL OF ASTHMA CONTROL IN PRIMARY CARE IN THE UK AS DETERMINED BY THE RCP 3 QUESTIONS

Introduction From 2012, the Quality Outcomes Framework (QOF) in Asthma was amended to include an objective assessment of a patient’s asthma control using the RCP 3 questions.

In the last month
- Have you had difficulty sleeping because of your asthma symptoms (including cough)?
- Have you had your usual asthma symptoms during the day (cough, wheezing, chest tightness or breathlessness)?
- Has your asthma interfered with your usual activities (for example, housework, work/school, etc.)?

Controlled asthma is defined as answering ‘no’ to all 3 questions.

Cegedim Ltd, who own the InPS Vision prescribing software, have access to anonymised QOF data and have used 150 GP practices which are selected to provide UK-wide representation. This has enabled an analysis to determine real-world levels of asthma control in primary care in the UK.

Methods Asthma patients were identified according to QOF business rules. Patients who had provided responses to the RCP 3 questions (during the period March 2012–February 2013) were selected. A subset of those who had been on the same medication for 12 months prior to that assessment were specified, defined as consistently prescribed the same medication at the time of assessment and 12 months prior.

Results A cohort of 19,582 asthma patients who had completed the RCP 3 question assessment during the study period with 12 months of consistent therapy was identified. One-quarter (25%) of patients were controlled (answered ‘no’ to all questions). For patients at BTS Step 1 (SABA only) and BTS Step 2 (ICS monotherapy), the proportion controlled was 28% and 27% respectively. For patients at BTS Step 3 and above (ICS and LABA in combination, including as separate inhalers) the proportion was 23% (see figure).

Conclusions Asthma control in primary care in the UK is poor with only 25% of asthmatics achieving control as defined by the RCP 3 questions; levels of control were consistent across BTS steps. Interventions to understand barriers and improve asthma control are warranted.