Patients’ with obstructive sleep apnoea syndrome (OSAS) preferences and demand for treatment: a discrete choice experiment

Rationale Despite its high level of effectiveness, initial acceptance of continuous positive airway pressure (CPAP) and regular use in patients with obstructive sleep apnea syndrome (OSAS) are still an issue. Alternatively, oral appliances (OAs) can be recommended. To improve patient engagement in their treatment, physicians are advised to take into account patient preferences and to share the therapeutic decision. We aimed to determine patients’ preferences for OSAS treatment-related attributes, and to predict patients’ demand for both CPAP and OAs.

Methods A discrete choice experiment (DCE) was performed in 121 newly diagnosed patients consecutively recruited in a sleep unit. Results Regression parameters were the highest for impact on daily life and effectiveness ahead of side effects. In the French context, the demanding probabilities for CPAP and OAs were 60.2% and 36.2%, respectively. They were sensitive to the variation in the amount of out-of-pocket expenses for both CPAP and OAs.

Conclusions This first DCE in OSAS emphasises the importance to communicate with patients before the implementation of treatment.

INTRODUCTION

Following the most recent guidelines, continuous positive airway pressure (CPAP) is indicated as a first-line treatment for patients suffering from obstructive sleep apnoea syndrome (OSAS). However, initial acceptance and regular use of CPAP treatment are still an issue. Alternatively, oral appliances (OAs) are recommended in case of initial refusal or failure of CPAP option, and also as a first-line treatment in mild to moderate OSAS. Because of problems of compliance, patients and physicians are faced with difficult decisions regarding which OSAS treatment options to choose. Physicians are encouraged to take into account patients’ preferences, and possibly to involve them in the medical decision making. We used a preferences elicitation method, namely the discrete choice experiment (DCE), to determine patients’ preferences for OSAS treatment-related attributes, and to predict patients’ demand for both CPAP and OAs.

Table 1 Nested logit model estimates and impact analysis (n=2904 observations)

<table>
<thead>
<tr>
<th>Effect</th>
<th>Estimate (SE)</th>
<th>Partial effect*</th>
<th>Relative effect (%)†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment (A)</td>
<td>0.024 (0.186)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>(No) treatment</td>
<td>−0.964 (0.483)†</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Rate of effectiveness (ref: 40%)</td>
<td>1.065 (0.280)†</td>
<td>−62.7</td>
<td>25.9</td>
</tr>
<tr>
<td>Severity of side effects (ref: severe)</td>
<td>0.635 (0.202)†</td>
<td>−21.6</td>
<td>8.9</td>
</tr>
<tr>
<td>Time before improvement (ref: 4 weeks)</td>
<td>0.412 (0.133)†</td>
<td>−8.9</td>
<td>3.7</td>
</tr>
<tr>
<td>Negative impact on daily life (ref: high)</td>
<td>1.586 (0.428)†</td>
<td>−141.7</td>
<td>58.6</td>
</tr>
<tr>
<td>Out-of-pocket expense (continuous variable)</td>
<td>−0.004 (0.001)†</td>
<td>−6.9</td>
<td>2.9</td>
</tr>
</tbody>
</table>

*Partial effect=LL of the model including only the attribute; LL of ‘null’ model.†Relative effect=100×(partial effect/LL of ‘full’ model; LL of ‘null’ model).‡Estimated parameter significantly different from zero for a 5% α-risk.
In the French context, the demanding probabilities for CPAP and OAs were 60.2% and 36.2%, respectively. They were sensitive to the variation in the amount of out-of-pocket expense for both CPAP and OAs.

CONCLUSIONS
To our knowledge, this is the first study that used the DCE method to measure patients’ preferences for OSAS treatments. Because it was a single-centre study which took place in one healthcare system in which public insurance covers 65% of treatment cost (ie, in France), we should be cautious with the generalisability of the results. This DCE in OSAS emphasises the importance of communicating with patients before the implementation of treatment, since effectiveness of treatment and impact on daily life constitutes the most important factors of choice ahead of side effects. However, these preferences could be threatened by the high level of out-of-pocket expenses. Further research is needed to investigate more specifically how financial constraint can influence patients’ preferences.

Nicolas Krucien,1 Amiram Gafni,2 Bernard Fleury,3 Nathalie Pelletier-Fleury1
1Centre de Recherche Médecine, Sciences, Santé, santé Mentale, Société (CERMES3)—UMR 8211—U988, INSERM, Villejuif 94801, France; Krucien@vjf.cnrs.fr
2Centre for Health Economics and Policy Analysis, Department of Clinical Epidemiology and Biostatistics, McMaster University (HSC-3H29), Hamilton, Ontario, Canada
3Unité de Sommeil, Hôpitaux de Paris, Hôpital Saint Antoine, Paris, France

Acknowledgements The authors would like to thank Anne Campana for her assistance and seriousness in monitoring the study.

Contributors All authors have made important contributions in the discussion and drafting of the article.

Competing interests BF is consultant for a French company developing and selling oral appliance devices (Orthosom).

Ethical approval This survey was approved by the ‘Comité de Protection des Personnes Île de France V’ (number 10815, 7 September 2010).

Provenance and peer review Not commissioned; externally peer reviewed.

▸ An additional data are published online only. To view these files please visit the journal online (http://dx.doi.org/10.1136/thoraxjnl-2012-202240).

Accepted 2 September 2012
Published Online First 21 September 2012

REFERENCES
Supplementary file

The development of the discrete choice questionnaire was carefully performed following a step-by-step approach.

1st step: Selection of the attributes and their levels
The attributes and levels of each attribute used to describe the options were selected on the basis of a literature review. At this step the objective was to select the most relevant attributes used by patients and clinicians in the medical decision making. There were 4 attributes with two levels: rate of effectiveness (40%, 100%), severity of side effects (severe, not severe), time before improvement in health condition (4 weeks, immediately), negative impact on daily life (high, low). The out-of-pocket expense attribute had four levels (0€, 100€, 200€, and 300€).

2nd step: Design of the experience
With 4 attributes with 2 levels each and 1 attribute with 4 levels, 64 combinations of outcomes could be defined. For a paired generic comparison format (i.e. treatment “A” versus treatment “B”), a full factorial design of choice tasks led to 2 016 possibilities. To reduce the number of possibilities we used an orthogonal main effects plan with fold-over procedure allowing a final solution of 16 tasks. Because choice tasks are cognitively demanding for respondents, the 16 tasks were randomly allocated into 2 blocks of 8 tasks each. In addition 2 other tasks were introduced into each block to verify the hypotheses of monotonicity (i.e. more is preferred to less) and stability underlying the choice behavior of respondents. Respondents were deemed “inconsistent” when they failed at least one of the two tests. If this was the case, they were excluded from the statistical modeling.

3rd step: Sampling and administration of survey
Anticipating a 90% rate of success in the “consistency” tests and following Aspinall et al (in: Invest Ophthalmol Vis Sci, 2008;49(5):1907-15) method to calculate the sample size, a
minimum of 140 patients had to be recruited. All participants were informed that their responses were anonymous and will not influence their forthcoming care. Written information was provided that describes clearly, systematically and in an easy way to understand the choice tasks.

4th step: Discrete choice modeling

To model the preferences we used a nested logit model, by separating the options in two different nests, namely a “no treatment” nest composed of the “no treatment” option, and a “treatment” nest composed of options “A” and “B”. The model was estimated by logistic regression with the choice made as dependent variable. The respondent (n=1,...,N) at the task (t=1,...,T) will choose the option (A) over the option (B) if the utility of (A) is greater than that of (B).

\[
\begin{align*}
\mathbb{P}(n_j(t) = A | \mathbf{X}_j, \mathbf{z}_j) &= \begin{cases}
1, & V(A) > V(B) \\
0, & V(A) \leq V(B)
\end{cases}
\end{align*}
\]

Where the utility of (A) consist in a systematic observable component (V) and a random unobservable component (\(\mathbf{z}_j\)):

\[
V(A) = V_n + \mathbf{z}_j
\]

Attributes’ levels are used to explain the systematic part of the utility.

\[
U_{nj} = \beta_1 NO + \beta_2 A + \beta_3 EFF + \beta_4 SIDE + \beta_5 TIME + \beta_6 IMP + \beta_7 EXP + \epsilon_{nj}
\]

Where “NO” is a constant to estimate overall tendency of patients to choose the “no treatment” nest over the “treatment” nest. “A” is a constant to estimate a potential right/left bias, namely an overall tendency of patients to choose the option A rather than B disregarding its content (i.e. attributes’ levels). EFF is the “rate of effectiveness” attribute and its associated parameter \(\beta_3\) is the marginal utility of moving from a treatment with 40% effectiveness to a treatment with 100% effectiveness. SIDE, TIME, and IMP are respectively the “side effects”, “time before improvement”, and “negative impact on daily life” attributes. Their associated parameters \(\beta_4, \beta_5\) and \(\beta_6\) are the marginal utility of moving from the worst attribute’s level to the best. EXP is the “out-of-pocket expense” attribute. Its associated parameter \(\beta_7\) is the marginal utility for a one euro change in out-of-pocket expense. The \((\mathbf{z}_{nj})\) term is a random component identically independently distributed as type 1 extreme value. Under this specification, the choice probabilities can be predicted with a logit model.
Following Lancsar et al (in: Soc Sci Med, 2007;64:1738-53) we assessed the relative impact of each attribute on the choice of treatment by analyzing changes of the log-likelihood of the model. The variables were “effect” coded (-1; +1) to allow a meaningful estimate of the “model constant”. The out-of-pocket expense variable was entered into the model as a continuous variable.

In addition, from the estimated preferences it was possible to predict the probability of choosing a specific treatment with given levels of attributes. Given that a CPAP treatment was considered 100% effective, with non-severe side effects, no time to wait before treatment to be effective, a high negative impact on daily life, and in the French case a 378€ out-of-pocket expense per year, the utility of CPAP treatment was computing as below:

\[
U(\text{CPAP}) = (2.13 \times 1) + (1.27 \times 1) + (0.82 \times 1) + (3.17 \times 0) - (-0.0038 \times 378) \approx 2.78
\]

In the same way, the utility of OA treatment is 2.28. The “No treatment” option is the only one for which its subjective value cannot be recovered, and then we need to fix its value. Conventionally its value is assumed to be null. These utility values were used to predict the probabilities of choice.

\[
P(\text{CPAP}) = \frac{\exp(\text{CPAP})}{\exp(\text{CPAP}) + \exp(\text{OA}) + \exp(\text{NO})} = 60.2\%
\]

\[
P(\text{OA}) = \frac{\exp(\text{OA})}{\exp(\text{CPAP}) + \exp(\text{OA}) + \exp(\text{NO})} = 36.2\%
\]

\[
P(\text{NO}) = \frac{\exp(\text{NO})}{\exp(\text{CPAP}) + \exp(\text{OA}) + \exp(\text{NO})} = 3.6\%
\]

To account for possibility of different out-of-pocket expenses according healthcare systems, a sensitivity analysis was performed using different amounts of out-of-pocket expense (from 0 to 1 000 Euros) for both CPAP and OAs. It appeared that patient demand for CPAP was very sensitive to the variation in the amount of out-of-pocket expense for both CPAP and OAs (see figure). The higher the out-of-pocket expense for CPAP was, the less the likelihood of choice of CPAP was (horizontal reading of the graph). The cheaper the OAs treatment was, the less the likelihood of choice of CPAP was (vertical reading of the graph).
Figure. Probability of CPAP choice according to out-of-pocket expense for CPAP and OAs (in Euros per year)

- OA = 0 €
- OA = 100 €
- OA = 233 €
- OA = 500 €
- OA = 1000 €