Authors’ response

We thank Hochhegger, Irion and Marchiorifor their interest in our manuscript. We agree that cumulative radiation dose exposures from chest computed tomography (CT) could be a limiting factor for the use of frequent scans in children with cystic fibrosis, although continuous advances in CT technology are allowing comprehensive assessments of lung structure with increasingly smaller radiation exposures. The authors suggest that lung magnetic resonance imaging (MRI) may be an emerging modality with improving temporal and spatial resolution, stating that previous studies demonstrate that MRI is comparable with CT for the detection of structural changes. In fact, these studies were conducted in older children and adults with established structural disease, rather than in infants and young children in whom the earliest changes in lung structure occur. As the earliest structural changes due to cystic fibrosis appear to develop in the peripheral airways, a region of the lung that is poorly characterised by lung MRI, both by direct assessment of small airways and indirectly by air trapping, the relatively poor ability of lung MRI to accurately assess the peripheral airways is likely to limit its use for assessing airways disease in young children or in mild disease. While lung MRI has an additional ability to assess functional changes, the importance of these in early childhood is not clear. Therefore, at present, the role of lung MRI in assessing mild structural changes due to cystic fibrosis seen in early childhood is uncertain and until lung MRI is established as a feasible and appropriate assessment tool for early structural lung disease, chest CT remains the gold standard in this population, particularly when acknowledging the reducing radiation exposures afforded by technological advances.

Lauren Sarah Mott, Judy Park, Conor P Murray, Catherine L Gangell, Nicholas H de Klerk, Philip J Robinson, Colin F Robertson, C Ranganathan, Stephen M Stick for on behalf of AREST Cystic Fibrosis

1 Telethon Institute for Child Health Research and Centre for Child Health Research, Perth, Western Australia, Australia
2 School of Paediatrics and Child Health, University of Western Australia, Western Australia, Perth, Australia
3 Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Australia
4 Department of Diagnostic Imaging, Princess Margaret Hospital for Children, Perth, Australia
5 Murdoch Children’s Research Institute, Melbourne, Australia
6 Department of Paediatrics, University of Melbourne, Melbourne, Australia
7 Queensland Children’s Medical Research Institute, University of Queensland, Brisbane, Australia

Correspondence to Professor Stephen M Stick, Department of Respiratory Medicine, Princess Margaret Hospital for Children, Subiaco WA 6008, Australia; Stephen.Stick@health.wa.gov.au

Competing interests None.

Provenance and peer review Not commissioned; internally peer reviewed.


Accepted 5 September 2012

Published Online First 16 October 2012

http://dx.doi.org/10.1136/thoraxjnl-2012-202232

REFERENCE