prednisolone. Procedures were performed by 2 physicians or by 1 physician and a nurse, using conscious sedation with alfentanyl and midazolam. One patient required deeper sedation [remifentanyl and propofol] due to a complicated medical history. Bronchial thermoplasty was administered in three sessions, treating the right lower lobe, the left lower lobe and both upper lobes respectively. Follow up is at 3 monthly intervals for both safety and efficacy outcomes.

**Results** Between 2<sup>nd</sup> June 2011 and 30<sup>th</sup> April 2012, ten patients underwent bronchial thermoplasty in Glasgow [7 males, 3 females] (Table 1). Six patients were at Step 5 and four at Step 4 of the British Guideline on the Management of Asthma scale. 4/10 were taking oral prednisolone daily and 2/10 were receiving omalizumab treatment [for 4<sup>th</sup> year and 3<sup>rd</sup> year respectively]. Treatment sessions were largely uneventful and adverse effects were similar to those reported in clinical trials. To date, there has been a reduction in some asthma medications: two patients receiving omalizumab have successfully discontinued treatment; those taking oral steroids are being weaned off prednisolone.

**Conclusion** Bronchial thermoplasty can be safely delivered in a clinical setting to patients with severe asthma.

## References

 Thomson NC, Bicknell S, Chaudhuri R Bronchial thermoplasty for severe asthma. Curr Opin Allergy Clin Immunol 2012; 12:241–248.

Abstract P5 Table 1 Baseline demography of 10 patients with severe asthma treated with bronchial thermoplasty

|                                               | Mean [SD]   | Min-Max   |
|-----------------------------------------------|-------------|-----------|
| Age (years)                                   | 48 [10]     | 35–65     |
| Beclometasone equivalent ICS dose ( $\mu g$ ) | 2580 [1425] | 1000-6000 |
| ACT Score                                     | 11.3 [4.27] | 6-20      |
| AQLQ Score                                    | 3.94 [0.83] | 2.7-5.1   |
| HADS Total                                    | 11.6 [8.7]  | 2–27      |
| FEV <sub>1</sub> , (L)                        | 2.55 [0.6]  | 1.6-3.46  |
| FEV <sub>1</sub> (% predicted)                | 71.4 [16.8] | 43-96     |
| Exhaled nitric oxide (ppb)                    | 43 [40]     | 2.7-126   |
| Exacerbations in past 12 months               | 2.9 [3.1]   | 0-8       |
| Hospital admissions/A&E in past 12 months     | 1 [1.9]     | 0-5       |

**Abbreviations** ACT=asthma control test; AQLQ=asthma quality of life questionnaire; HADS=hospital anxiety and depression scale, FEV,=forced expired volume in one second.

P6

FLUTICASONE PROPIONATE/FORMOTEROL FUMARATE COMBINATION THERAPY HAS AN EFFICACY PROFILE SIMILAR TO THAT OF ITS INDIVIDUAL COMPONENTS ADMINISTERED CONCURRENTLY

doi:10.1136/thoraxinl-2012-202678.147

T McIver, B Grothe, M Jain, S Dissanayake. *Mundipharma Research Limited, Cambridge, United Kingdom* 

**Background** A new asthma therapy containing a combination of the inhaled steroid fluticasone propionate (FLUT) and the longacting  $β_2$  agonist (LABA) formoterol fumarate (FORM) in a metereddose inhaler has been developed (FLUT/FORM; flutiform®). In a double-blind, double-dummy, randomised, multicentre, four arm parallel group study, the efficacy and safety of FLUT/FORM vs. FLUT and FORM administered concurrently (FLUT+FORM) was assessed. Here we present efficacy results of a post-hoc subgroup analysis comparing FLUT/FORM 500/20 μg vs. FLUT+FORM 500 μg + 24 μg (both twice-daily) by baseline asthma severity.

**Methods** In total, 620 patients were randomised 1:1:1:1 to receive FLUT/FORM 500/20  $\mu$ g, FLUT/FORM 100/10  $\mu$ g, FLUT+FORM

500 μg + 24 μg or FLUT 500 μg. Randomisation was stratified by percentage predicted FEV<sub>1</sub> at baseline [ $\ge$ 40– $\le$ 60% ('severe asthma'; 52% of patients) *vs.* >60% –  $\le$ 80% ('moderate asthma'; 48% of patients)], allowing a post-hoc dichotomised analysis by baseline FEV<sub>1</sub> severity of spirometric and symptom-based endpoints.

**Results** Similar improvements in lung function (change in predose FEV<sub>1</sub> and change in 2-hour post-dose FEV<sub>1</sub>) were seen in the FLUT/FORM 500/20  $\mu$ g treatment group and the FLUT+FORM 500  $\mu$ g + 24  $\mu$ g treatment group overall [treatment difference 0.079 (95% CI: -0.032, 0.190) P=0.164 and treatment difference 0.040 (95% CI -0.069, 0.149) P=0.471, respectively]. Both severe and moderate asthmatic subgroups demonstrated mean changes from baseline approximating or exceeding a minimally important improvement (200 mL)¹ with similar efficacy in the FLUT/FORM 500/20  $\mu$ g and the FLUT+FORM 500  $\mu$ g + 24  $\mu$ g moderate and severe subgroups (Table 1).

There were no statistically significant or clinically relevant differences overall or in either of the subgroups between FLUT/FORM 500/20  $\mu$ g and FLUT+FORM 500  $\mu$ g + 24  $\mu$ g for any symptom-based endpoints. These included asthma symptom scores, sleep disturbance scores, rescue medication use and asthma control days.

**Conclusion** FLUT/FORM and FLUT+FORM demonstrated similar improvements in lung function (pre-dose and 2-hour post dose  ${\rm FEV}_1$ ) and symptom-based endpoints in the overall population, and in both subgroups.

Abstract P6 Table 1 Summary of LS mean changes from baseline for spirometric endpoints, overall and stratified by FEV1 % predicted – ITT population

| Endpoint                                                                               | FLUT/FORM<br>500/20 µg n=154 | FLUT + FORM 500 μg<br>+ 24 μg n=156 |
|----------------------------------------------------------------------------------------|------------------------------|-------------------------------------|
| Change in pre-dose FEV <sub>1</sub> from Day 1 to Day 56                               |                              |                                     |
| All patients                                                                           | 0.346                        | 0.267                               |
| Treatment difference (95% CI)                                                          |                              | 0.079 (-0.032, 0.190)               |
| P-value                                                                                |                              | P = 0.164                           |
| FEV1 ≤60% subgroup                                                                     | 0.414                        | 0.353                               |
| Treatment difference (95% CI)                                                          |                              | 0.061 (-0.108, 0.231)               |
| P-value                                                                                |                              | P = 0.477                           |
| FEV1 >60% subgroup                                                                     | 0.260                        | 0.173                               |
| Treatment difference (95% CI)                                                          |                              | 0.087 (-0.053, 0.227)               |
| P-value                                                                                |                              | P = 0.222                           |
| Change in pre-dose FEV <sub>1</sub> from pre-dose Day<br>1 to 2-hours post-dose Day 56 |                              |                                     |
| All patients                                                                           | 0.517                        | 0.477                               |
| Treatment difference (95% CI)                                                          |                              | 0.040 (-0.069, 0.149)               |
| P-value                                                                                |                              | P = 0.471                           |
| FEV <sub>1</sub> ≤60% subgroup                                                         | 0.569                        | 0.577                               |
| Treatment difference (95% CI)                                                          |                              | 0.007 (-0.172, 0.157)               |
| P-value                                                                                |                              | P = 0.930                           |
| FEV <sub>1</sub> > 60% subgroup                                                        | 0.449                        | 0.367                               |
| Treatment difference (95% CI)                                                          |                              | 0.082 (-0.056, 0.221)               |
| P-value                                                                                |                              | P = 0.244                           |

P7

ASSESSING THE INTUITIVE EASE OF USE OF A NOVEL DRY POWDER INHALER, THE FORSPIRO™ DEVICE, FOR ASTHMA AND COPD

doi:10.1136/thoraxjnl-2012-202678.148

¹S Jones, ²T Weuthen, ³QJ Harmer, ⁴JC Virchow. ¹Sandoz GmbH, Holzkirchen, Germany; ²Aeropharm GmbH, Rudolstadt, Germany; ³Vectura Delivery Devices Ltd, Cambridge, UK; ⁴Universitatsklinik Rostock, Rostock, Germany

Poor inhaler technique has been recognised as a significant contributor to poor control.(1) A number of authors have attempted

A66 Thorax 2012;**67**(Suppl 2):A1–A204