of asthma, little is known about the specific relationship between asthma, occupational exposures and health-related quality of life.

Methods Adults aged over 55 years in the Sheffield area of the UK were randomly mailed a self-completed questionnaire (including questions on respiratory symptoms and physician-diagnosed disease, smoking and occupational history); responders were invited to perform lung function (FEV₁ and FVC), and to complete the EQ-5D-3L instrument. A measure of socioeconomic deprivation (SED) derived from postal code data was also included.

Results 623 individuals provided data as detailed above. 57% were male, 62% were “ever smokers”, 13% had an exclusive diagnosis of asthma (without any other respiratory disease) and 62% reported occupational exposure to vapours, gases, dusts or fumes (VGDF). A linear regression analysis was performed using the EQ-5D summary index score as the dependent variable and reported doctor diagnosed asthma, age, gender, percentage predicted FEV₁ (PFVEF), smoking history and prior history of VGDF exposure as independent variables. SED (p<0.001), Age (p<0.001), gender (p<0.001) and VGDF exposure (p<0.001) were all independently associated with a lower quality of life. Asthma (p=0.594) and smoking (p=0.541) were not.

Discussion These data do not support a link between self reported doctor diagnosed asthma and a reduction in quality of life in this population, after correcting for the effects of other relevant factors, although do support a link between occupational exposure to VGDF and a reduced health-related quality of life.

Introduction The interpretation of Specific Inhalation Challenge (SIC) can be equivocal, particularly for late asthmatic reactions. It has been suggested that increases in FE(NO) 24-hours post-challenge might help separate positive from negative challenges.

Methods We reviewed all positive and equivocal SIC tests with occupational agents between March 2008 and June 2012 from our tertiary referral centre. FE(NO) was measured pre- and 24-hours post control and active challenges using a Niox Mino handheld machine at 50 ml/sec, compliant with ERS/ATS recommendations. Post-challenge changes >20% for FE(NO) >50 ppb, or >10 ppb for <50 ppb, were counted as per ATS guidelines for a clinically significant change (1).

Results 24 patients had complete data related to control and active challenges, which were positive in 15 and equivocal in 9 cases. 13/24 patients had raised pre-control challenge FE(NO) (mean=51.3) after adjusting for smoking and inhaled corticosteroid use. Increases in FE(NO) more than the minimum clinically relevant difference, were seen after 13/24 control challenges: including 6/7 exposures to vapours, gases, dusts or fumes (VGDF).

Conclusions The previously defined minimum clinically relevant difference for FE(NO) was seen as commonly following control as active challenges. Measuring changes in FE(NO) pre- and 24-hours post challenge to the diverse range of low molecular weight agents tested did not provide useful additional information for interpreting SIC responses.

Reference