No Yes ## Bonferroni's Multiple comparison test One way ANOVA Is p<0.05? Severe OSAS 2A20 bliM Moderate OSAS Controls [ODI 5 -15] [ODI 16 - 30] [0DI > 30]Control vs Control vs Control vs Mild vs Mild Vs Moderate (n = 50)(n = 44)(n = 41)(n = 48)Mild Moderate P value Moderate Severe Severe vs Severe Coping Strategy Score 3.5(2.5) 6.9(4.1) 6.8(4.4) 6.6(5.2) < 0.0001 Yes Yes Yes No No No 11(6) < 0.0001 Yes Yes Abstract S47 Table 1 3(2) ESS have a rest, but some may use various strategies to try to stay alert. We devised a questionnaire that assessed various commonly used coping strategies and explored whether there is a difference between patients with OSAS and normal controls. We also hypothesised that patients might admit to utilising such strategies more readily than to sleepiness while driving and asked about sleepiness while driving in various situations. 12(5) 10(5) **Method** 133 (52 \pm 10 yrs, ESS 12 \pm 6, ODI 31 \pm 24) untreated OSAS patients and 49 healthy controls (45±17 yrs, ESS 3±2) were included in the study. The coping strategy section included ten questions about various strategies they adapt in order to stay awake. They were asked to rate on a 3-point scale, from "never" to "frequently". The questionnaire was scored by adding up the ratings for the ten questions, and the highest possible score was 30. Comparisons were made using one way ANOVA. **Results** There was a significant difference in the total coping strategy score between the patients of different severities (mild, moderate, severe, as per ODI) and the healthy controls. However there was no difference when different severities of OSAS were compared against each other (Table 1). There was strong correlation between the coping strategy score & ESS (Spearman r=0.53, p<0.0001). 81% (38/47) of patients and 77% (23/30) of controls who did not admit to feeling sleepy while driving admitted using coping strategies. Conclusion OSAS patients report using significantly higher number of coping strategies compared to healthy individuals irrespective of the severity of disease. It also correlated strongly with marker of day time sleepiness (ESS). Asking about such coping strategies may be a better way identifying who are at risk of an accident than asking directly about problems with sleepiness while driving. ## Randomised clinical trials in COPD S48 THE EFFECT OF ANGIOTENSIN-CONVERTING ENZYME INHIBITION ON SKELETAL MUSCLE DYSFUNCTION IN CHRONIC OBSTRUCTIVE PULMONARY DISEASE: A RANDOMISED CONTROLLED TRIAL doi:10.1136/thoraxjnl-2012-202678.054 ¹D Shrikrishna, ¹RJ Tanner, ²JY Lee, ²SA Natanek, ²A Lewis, ³PB Murphy, ³N Hart, ⁴J Moxham, ⁵H Montgomery, ²PR Kemp, ¹MI Polkey, ¹NS Hopkinson. ¹National Heart and Lung Institute, NIHR Respiratory Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust & Imperial College, London, UK; 2Molecular Medicine Section, National HeartLung Institute, South Kensington Campus, Imperial College, London, UK; ³Guy's and St Thomas' NHS Foundation Trust and King's College London, NIHR Comprehensive Biomedical Research Centre, London, UK; 4Department of Asthma, Allergy and Respiratory Science, Division of Asthma, Allergy and Lung Biology, King's College, London, UK; 5 Institute for Human Health and Performance, University College, London, UK **Introduction** Skeletal muscle impairment is a well recognised complication of COPD, predicting mortality in severe disease. Evidence from animal models, genetic studies and observational cohorts suggest a role for the renin-angiotensin system in control of muscle phenotype.2 We hypothesised that angiotensin-converting enzyme (ACE) inhibition would have a beneficial effect on quadriceps function in patients with COPD. Yes Nο Methods A single-centre, double-blind randomised controlled parallel-group trial investigating the effect of fosinopril versus placebo on quadriceps muscle dysfunction in COPD patients with quadriceps weakness. Muscle weakness was defined as a quadriceps maximum voluntary contraction (QMVC) less than 120% of the body mass index.1 Measurements The primary outcome was change in nonvolitional quadriceps endurance at 3 months, measured using repetitive magnetic stimulation. QMVC, mid-thigh CT cross-sectional area (MT_{CSA}), incremental shuttle walk distance (ISWD) and serum inflammatory markers were secondary outcomes. Results 80 patients were enrolled (mean(SD), 65(8) years, FEV, 43(21)% predicted, 53% male). 67 patients (31 fosinopril and 36 placebo) completed the trial, with the treatment group demonstrating a significant reduction in systolic blood pressure (Δ-10.5mmHg, 95%CI-19.9 to -1.1, p=0.03) and serum ACE activity (Δ -20.4 units/L, 95%CI -31.0 to -9.8, p<0.001) compared to placebo. At 3 months, no significant difference was observed in quadriceps muscle endurance half-time (fosinopril $\Delta 5.1$ s, 95%CI -4.3 to 14.5, p=0.27 vs. placebo $\Delta 4.6s$, 95%CI –5.8 to 15.1, p=0.37; between group $\Delta 0.5s$, 95%CI -13.3 to 14.3, p=0.94). QMVC improved significantly in both groups (fosinopril Δ 1.1kg, 95%CI 0.03 to 2.2, p=0.045 vs. placebo $\Delta 3.6$ kg, 95%CI 2.1 to 5.0, p<0.0001) with a greater increase in the placebo arm (between group $\Delta 2.5$ kg, 95%CI 0.7 to 4.3, p<0.01). There was no significant change in MT_{CSA} (p=0.09), ISWD (p=0.51) or serum inflammatory markers (C-reactive protein, p=0.17) between the groups. Stratification based on ACE genotype did not influence study outcomes. Conclusion This randomised controlled trial found that ACEinhibition did not improve quadriceps function in a COPD population with quadriceps weakness. Study funded by the Medical Research Council. Trial registration: NCT01014338. - 1. Swallow EB, et al. Thorax 2007; 62:115-20. - 2. Shrikrishna D, et al. Clin Sci 2012; 123:487-98. S49 A SELF-MANAGEMENT PROGRAMME OF ACTIVITY COPING AND EDUCATION (SPACE) FOR COPD: RESULTS FROM A RANDOMISED CONTROLLED TRIAL doi:10.1136/thoraxjnl-2012-202678.055 ¹K Mitchell-Wagg, ¹V Warrington, ¹L Apps, ¹L Sewell, ²J Bankart, ¹M Steiner, ¹M Morgan, ¹S Singh, ³S Singh. ¹University Hospitals Leicester NHS Trust, Leicester, United Kingdom; ²University of Leicester, Leicester, United Kingdom; ³Coventry University, Coventry, United Kingdom Introduction The NHS Outcomes Strategy for COPD has identified self-management as an approach targeted at reducing the impact of COPD.1 Previous self-management programmes have either been unsupported, such as brief education or action plans, or have been of high intensity, equivalent with pulmonary rehabilitation. Furthermore, no studies have specifically tested selfmanagement in patients managed in primary care. SPACE is a