described. CSE was prepared by combusting 1 Marlboro cigarette through 25 ml of media. Cell viability was determined after primary nasal epithelial cells (PNECs) were stimulated with 5% CSE for 24 h (caspase 3 levels determined after 4 h), in the presence or absence of 20 mM N-acetylcysteine (NAC). In separate experiments, cultures were stimulated with *Pseudomonas aeruginosa* lipopolysaccharide (PA LPS) for 24 h (0 – 30 μg/ml), and the effects of pre-incubation with CSE±20 mM NAC for 4 h evaluated in terms of cytokine release. Phospho-NF-κB activity was determined after 1 h PA LPS exposure. Apoptosis was evaluated using annexin-V staining and the terminal transferase-mediated dUTP nick end-labeling (TUNEL) method.

Results 8% CSE (4 h) exposure was immunosuppressive in PNEC cultures for both IL-8 and IL-6 release (0.53 fold reduction in IL-8 and 0.49 fold reduction in IL-6 release after stimulation with 30 μg/ ml PA LPS for 24 h). 4 h exposure to CSE heightened active caspase 3 levels, and a 24 h exposure induced both early and late apoptosis established by annexin-V staining (Table 1). Apoptosis was confirmed using the TUNEL assay. All of these effects were mitigated with the addition of 20 mM NAC to the CSE (0.65 fold reduction in IL-8 and 0.75 fold reduction in IL-6 release after stimulation with 30μg/ml PA LPS for 24 h).

Conclusions A 4 h CSE exposure was immunosuppressive in PNEC cultures and induced apoptosis. Reactive oxidative species are at least partially responsible for these observations.

Research funded by NI RDO.

Abstract P251 Table 1 Annexin-V analysis of 5% CSE±20 mM NAC treatment in PNEC Cultures.

<table>
<thead>
<tr>
<th></th>
<th>Viable</th>
<th>Early Apoptotic</th>
<th>Late Apoptotic</th>
<th>Necrotic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control 24 h</td>
<td>99.4%</td>
<td>0.4%</td>
<td>0.1%</td>
<td>0.1%</td>
</tr>
<tr>
<td>5% CSE 24 h</td>
<td>29.1%</td>
<td>47.7%</td>
<td>21.2%</td>
<td>2.0%</td>
</tr>
<tr>
<td>NAC 6 5% CSE 24 h</td>
<td>74.0%</td>
<td>18.3%</td>
<td>4.8%</td>
<td>2.9%</td>
</tr>
</tbody>
</table>

P252 PD-1 Expression on Human Lung T Cells in Health and COPD

doi:10.1136/thoraxjnl-2012-202678.344

RT McKendry, CM Spalluto, KJ Staples, TMA Wilkinson. The University of Southampton, Southampton, United Kingdom

Introduction and Objectives Patient s with chronic obstructive pulmonary disease (COPD) are susceptible to the effects of recurrent respiratory infections despite increased numbers of CD8+ T cells in the lungs. We hypothesised that the inability of CD8+ T cells to successfully combat respiratory pathogens in COPD may be due to T cell “exhaustion” - a phenomenon described in chronic infections. Exhausted CD8+ T cells have significantly reduced cytotoxicity and inflammatory cytokine release. Exhaustion is thought to be initiated by the binding of PD-1 on T cells to its ligand (PD-L1) which is expressed on epithelial cells and macrophages. PD-1 expression is upregulated in murine models of acute and chronic viral infection, but this has yet to be elucidated in human cells.

We aimed to identify and quantify PD-1+ CD4+ and CD8+ T cells and cells expressing PD-L1 in the lungs of COPD patients and non-COPD controls.

Methods Lung tissue from patients undergoing surgery was digested using collagenase to form single-cell suspensions. Lung T cells were identified as populations of CD45+CD3+ cells which were either CD4+CD8- or CD4-CD8+. T cells expressing PD-1 were quantified by multi-colour flow cytometry. Patients with a FEV1/FVC ratio <70% were defined as having COPD.

Results The proportion of CD8+ T cells in the COPD lung (mean expression = 40.87%, SD = 14.67) was significantly higher (p = 0.013, students t-test) than in non-COPD (mean expression = 26.74%, SD = 11.12), reflecting previous findings. PD-1 expression in CD4+ T cells appeared to be lower in COPD (mean expression = 39.91%, SD = 13.02) than non-COPD (mean expression = 50.53%, sd = 13.05) but this was not significant. PD-1 expressing CD4+ cells (mean expression = 2.17%, SD = 1.4) and CD8+ cells (mean expression = 6.02%, sd = 5.73) were detected in tissue, but not in the blood of the same patients. PD-L1 was undetectable on lung epithelial cells but was expressed on macrophages (mean expression = 2.85%, SD = 1.91).

Conclusion Elements of the exhaustion pathway are expressed in the human lung in stable COPD. Further work is needed to clarify if there is an upregulation of this pathway in COPD that may explain the susceptibility of these patients to viral exacerbation. Exhaustion of cells recognising respiratory pathogens may have a significant role in COPD outcomes and requires further elucidation.

P253 Association of Defective Monocyte-Derived Macrophage Phagocytosis with Clinical Phenotypes in Stable COPD

doi:10.1136/thoraxjnl-2012-202678.345

1R Singh, 2KK Chana, 1LL Wright, 1DS Garcha, 1BS Kowlessar, 1ARC Patel, 1AJ Mackay, 2PS Fenwick, 2GC Donaldson, 2PJ Barnes, 1JA Wenzlick, 2LE Donnelly. 1Centre for Respiratory Medicine, UCL, London, UK; 1Airway Disease Section, NHLI, Imperial College London, London, UK; 2Centre for Clinical Microbiology, UCL, London, UK

Introduction Macrophages play an important role in clearing inhaled particles and bacteria from the lung, thus maintaining its sterility. Defective phagocytosis of bacteria has been demonstrated in both alveolar and monocyte-derived macrophages (MDMs) from COPD patients and may play a role in the aetiology of the frequent exacerbator phenotype. We hypothesised that defective phagocytosis may also be associated with lower airway bacterial colonisation (LAB) and other clinical parameters in stable COPD.

Methods Whole blood and sputa were collected from stable patients in the London COPD cohort. Stable COPD was defined as no symptom-defined exacerbations recorded on prospectively completed diary cards in the preceding four weeks and subsequent two weeks. Monocytes were isolated from the whole blood and cultured with GM-CSF (2 ng/ml) for 12 days to generate MDMs. MDM phagocytosis of fluorescein-labelled polystyrene beads, *Haemophilus influenzae* (HI) and *Streptococcus pneumoniae* (SP) was measured by fluorimetry. LABC was defined as detection of HI, SP or *Moraxella catarrhalis* (MC) in sputum using quantitative PCR.

Results MDMs were cultured from 26 COPD patients. 54% were male, mean age 70.0 years (SD 8.3), FEV1, predicted 55.3% (20.3), 46% were current smokers, median daily inhaled corticosteroid (ICS) dose was 1000 (640–2000) mcg (beclometasone equivalent dose) and median exacerbation frequency per year was 1.8 (1.0–2.9) based on diary card events. Phagocytosis of HI was significantly less with increasing exacerbation frequency (p=0.002, r=-0.58, Figure 1), although no significant associations were demonstrated between exacerbation frequency and phagocytosis of inert beads or SP (p=0.27 and p=0.22 respectively). 15 patients (50%) with LABC did not demonstrate any significant difference in phagocytosis of either beads (p=0.29, HI (p=0.66) or SP (p=0.88) compared with non-colonised patients. There was no significant association between phagocytosis of beads, HI or SP with age, FEV1%predicted, smoking pack year history, ICS dose or BMI (all p>0.05).

Conclusion In stable COPD patients, decreasing phagocytosis of HI was associated with increasing exacerbation frequency. Phagocytosis was not related to LABC suggesting that macrophage activity alone may not determine bacteria colonisation. Further work is needed to elucidate the mechanisms of reduced phagocytosis in COPD and its relationship to exacerbation frequency.