A genome-wide analysis of open chromatin in human tracheal epithelial cells reveals novel candidate regulatory elements for lung function

Jared M Bischof,1,2 Christopher J Ott,1,2 Shih-Hsing Leir,1,2 Nehal Gosalia,1,2 Lingyun Song,3 Darin London,3 Terrence S Furey,4,5 Calvin U Cotton,6,7 Gregory E Crawford,3 Ann Harris1,2

ABSTRACT

Background Distal cell-type-specific regulatory elements may be located at very large distances from the genes that they control and are often hidden within intergenic regions or in introns of other genes. The development of methods that enable mapping of regions of open chromatin genome-wide has greatly advanced the identification and characterisation of these elements.

Methods Here we use DNase I hypersensitivity mapping followed by deep sequencing (DNase-seq) to generate a map of open chromatin in primary human tracheal epithelial (HTE) cells and use bioinformatic approaches to characterise the distribution of these sites within the genome and with respect to gene promoters, intronic and intergenic regions.

Results Genes with HTE-selective open chromatin at their promoters were associated with multiple pathways of epithelial function and differentiation. The data predict novel cell-type-specific regulatory elements for genes involved in HTE cell function, such as structural proteins and ion channels, and the transcription factors that may interact with them to control gene expression. Moreover, the map of open chromatin can identify the location of potentially critical regulatory elements in genome-wide association studies (GWAS) in which the strongest association is with single nucleotide polymorphisms in non-coding regions of the genome. We demonstrate its relevance to a recent GWAS that identifies modifiers of cystic fibrosis lung disease severity.

Conclusion Since HTE cells have many functional similarities with bronchial epithelial cells and other differentiated cells in the respiratory epithelium, these data are of direct relevance to elucidating the molecular basis of normal lung function and lung disease.

Key messages

What is the key question?
► What are the regulatory elements that control gene expression in the airway epithelium and where in the genome are they located?

What is the bottom line?
► We describe a resource that will enable rapid identification of functional genetic elements that control transcriptional networks in the airway epithelium.

Why read on?
► This has immediate relevance to determining the normal differentiation of the airway epithelium and what goes wrong in airway disease.

INTRODUCTION

The epithelia that line the trachea and bronchi of the human airway have important functions in protecting the respiratory system from environmental insults and pathogenic organisms while maintaining the conduit for air to and from the alveoli. Furthermore, major lung diseases such as chronic obstructive pulmonary disease (COPD), asthma and cystic fibrosis are associated with malfunction of the airway epithelium. The epithelial layer interacts closely with other cells in the airway, such as endothelial and immune cells.
open chromatin and determine their distribution throughout the genome. We determine that the peaks of open chromatin are more evident at the promoters of genes that are highly expressed in HTE cells than at inactive gene promoters. Moreover, HTE-selective peaks of open chromatin are associated with genes involved in pathways of epithelial differentiation and function. Within these peaks, predicted binding sites for some epithelial-specific transcription factors are over-represented. Next, we illustrate the power of these data to facilitate the characterisation of regulatory elements for genes that are coordinately expressed in HTE cells, such as structural proteins and ion channels. Finally, we demonstrate the use of these data to identify the molecular basis of genome-wide association studies (GWAS) that identify non-coding regions of the genome as strong candidates for disease effectors or modifiers. These results will enhance the understanding of transcriptional networks that coordinate lung epithelial function in health and disease.

RESULTS

Identification of DNase hypersensitive sites genome-wide

HTE cells were evaluated for regions of open chromatin genome-wide by mapping DNase I hypersensitive sites using DNase-seq. The sequence reads were then analysed with the F-seq application, a feature density estimator for high-throughput sequence tags,4 which identified 155,504 DNase hypersensitive sites (DHS) in the HTE cells. These sites represent elements in the genome where multiple sequence reads (peak signals) aligned to a common region. Since regulatory elements are often located within DHS, this map of open chromatin has the potential to identify regulatory elements for all genes that are expressed in the HTE cells. To distinguish between ubiquitous and cell-type-selective regulatory elements, we next subtracted DNase-seq data sets from five different cell types generated by the ENCODE consortium.1 These included skin fibroblasts (FibroPark), a lymphoblastoid cell line (GM12878), a cervical carcinoma cell line (HeLa-S3), a liver carcinoma cell line (HepG2), and human umbilical vein endothelial cells (HUVEC). Though two of these lines are cancerous, open chromatin data from relevant primary cells are not available for these epithelial cell types. The genomic overlap between HTE DHS and the other five cell types is shown in figure 1 and the numbers of DHS are shown in table 1. Of the 155,504 HTE sites, 39,656 (25.8%) were found to be cell type selective, in that they did not intersect with the hypersensitive sites present in any of the five other cell types, and 51,146 (20.5%) sites were ubiquitous, in that they overlapped (at least partially) with DHS from all five of the other cell types. Further analysis of the HTE DHS across different cell types revealed 974 genomic overlaps between HTE DHS and the other five cell types measured as the percentage of HTE DHS that overlap with each of the individual background cell types. FibroPark, skin fibroblasts; GM12878, a lymphoblastoid cell line; HeLa-S3, a cervical carcinoma cell line; HepG2, a liver carcinoma cell line; HUVEC, human umbilical vein endothelial cell.

Distribution of DHS across the genome

Next we analysed the distribution of DHS with respect to different genomic elements, according to the following categories: promoter (2 kb of sequence 5’ to the transcriptional start site), exon 1, intron 1, other genic, 2 kb of sequence 3’ to the transcriptional stop site, and intergenic (figure 2). DHS were subdivided according to whether they were HTE selective or ubiquitous (as defined above) and a third group (genome wide), which included all sites. We observed that the ubiquitous sites occur more frequently (25.6%) in promoter regions than HTE-selective sites (2.5%) and genome-wide sites (1.2%). A similar distribution of DHS is seen in the first exon of genes and to a lesser extent in the first introns and 2 kb downstream of genes. In contrast, the HTE-selective sites are most common in other genic sites and also more common than ubiquitous sites in intergenic regions.

Correlation of DNase-seq data with gene expression

Total RNA was extracted from the same cell cultures that were used for DNase-seq and evaluated on Nimblegen 72K HG18 60mer microarrays to characterise gene expression profiles. To look for a correlation between gene expression in HTE cells and the DNase-seq signal, gene expression values were divided into three groups: high expression (top 20%), middle expression (middle 20%) and low expression (bottom 20%). The remaining 40% of gene expression values were not included in the analysis. The DNase-seq base overlap signal, which is the number of reads that align to each base pair position of the genome, was averaged across the 1 kb before and after the transcription start site of the genes within each of these categories (figure 3). The data show that the most highly expressed genes correlate with an increased DNase-seq signal.

Table 1

<table>
<thead>
<tr>
<th>DNase-seq cell lines</th>
<th>Number of open chromatin sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTE (human tracheal epithelial cell)</td>
<td>153,504</td>
</tr>
<tr>
<td>FibroP (normal fibroblast from patients with Parkinson’s)</td>
<td>139,663</td>
</tr>
<tr>
<td>GM12878 (lymphoblastoid)</td>
<td>124,321</td>
</tr>
<tr>
<td>HeLa-S3 (cervical carcinoma)</td>
<td>141,165</td>
</tr>
<tr>
<td>HepG2 (liver carcinoma)</td>
<td>115,785</td>
</tr>
<tr>
<td>HUVEC (human umbilical vein endothelial cell)</td>
<td>126,284</td>
</tr>
<tr>
<td>NHEK (normal human epidermal keratinocyte)</td>
<td>140,520</td>
</tr>
</tbody>
</table>

DNase-seq, DNase I hypersensitivity mapping followed by deep sequencing.
Pathways of epithelial structure and function revealed by HTE-selective promoter DHS

The Entrez Gene IDs for the 1061 genes that exhibited one or more HTE-selective promoter DHS (representing 1118 DHS) were compiled into a text file and analysed with DAVID (Database for Annotation, Visualisation and Integrated Discovery)\(^9\) to look for gene processes that might be over-represented compared with all human genes. The top 10 most statistically significant DAVID ontologies/pathways are shown in table 2 and the entire list (p<0.1) is presented in online supplementary table 2. Five of the top 10 DAVID results are directly related to epithelial function, including epithelial cell differentiation (GO:0030855), epithelium development (GO:0009913), ectoderm development (GO:0060429), epidermal cell differentiation (GO:0008544), and epidermis development (GO:0030855), and epithelium development (GO:0043296). Moreover, three additional pathways are relevant to the function of polarised cells in the epithelial sheet lining the airway, including cell junction (GO:0009913) and apical junction complex (GO:0043296). This analysis thus validates the use of DNase-seq to identify cell-type-specific regulatory elements that are associated with open chromatin in HTE cells.

Table 2 Top 10 statistically over-represented processes from Database for Annotation, Visualisation and Integrated Discovery (DAVID) analysis when comparing a list of genes with human tracheal epithelial (HTE)-selective DNase I hypersensitive sites in their promoter to all human genes

<table>
<thead>
<tr>
<th>Category</th>
<th>GO Biological process</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOTERM_BP_FAT</td>
<td>GO:00030855: Epithelial cell differentiation</td>
<td>1.46×10^-6</td>
</tr>
</tbody>
</table>
Figure 4 COREs of open chromatin are associated with critical genes in human tracheal epithelial cell function. Each panel (A–C) shows a region of the human genome on the University of California Santa Cruz (UCSC) genome browser (http://genome.ucsc.edu) with combined DNase Solexa (Illumina) sequence data and peak calls for two biological replicates of human tracheal epithelial (HTE) cells and skin fibroblasts (Fibroblasts_park). UCSC genes within the region are also shown. Above these tracks are HTE-selective COREs (horizontal purple bars), HTE-selective DNase I hypersensitive sites (DHS) (vertical purple bars) and (in A, C) HTE-selective sites that do not overlap with sites in normal human epidermal keratinocytes (NHEK) (vertical grey bars, HTE-selective_sites_no_NHEK). Pink and teal circles show HTE-selective COREs or DHS of particular interest (see text). (A) Part of the type II cytokeratin cluster on chromosome 12q12-q13 showing the regions of open chromatin around the keratin 5 (KRT5) and 6A (KRT6A) genes, which are both highly expressed in HTE cells. (B) The calcium-sensitive chloride channel accessory protein (CLCA) cluster on
(pink circle in figure 4A). In contrast, the KRT6A promoter exhibits a common DHS in HTE and NHEK cells which is thus lost when the NHEK sites are subtracted (teal circle in figure 4A). One of the critical functions of tracheal epithelial cells is to control the airway luminal environment, so it was probable that we would find some regulatory elements for ion channels. Chloride channel accessory 2 protein (CLCA2), which is known to show some tracheal specificity, and is highly expressed in the cultured HTE cells, is associated with a HTE-selective CORE at its gene promoter, in contrast to the neighbouring CLCA1 gene on chromosome 1, which is expressed in intestinal epithelial cells and lacks an HTE-selective CORE (figure 4B). HTE-selective COREs are also associated with the promoter regions of multiple epithelial transcriptional regulator genes, including ELF3 (epithelial-specific, Ets domain transcription factor, E74-like factor 3),10 Kruppel-like factor 5 (KLF5)11 (see online supplementary figure 2) and GATA-binding protein 6 (GATA6),12 all of which are expressed in these cells and bronchial epithelial cells and/or lung. Several proteins implicated in airway disease also have HTE-selective COREs coincident with their promoters or within the gene itself, including S100 calcium-binding protein A9 (S100A9) which was linked with cystic fibrosis lung disease15–16 and IL2RB which was identified as an asthma susceptibility locus.17 The fact that this gene shows very low expression levels in the HTE cells suggests some of the cis-regulatory elements in the CORE may have an inhibitory effect on gene expression. When we extended this analysis to the list of 974 NCBI reference sequence genes with a greater representation of HTE-selective DHS within their promoters and coding regions than the five background cell types combined (see online supplementary table 1), many of the same loci were identified, including KRT5, KRT6A, KLF5 and S100A9.

HTE-selective DHS are enriched for binding sites for epithelial transcription factors

The HTE-selective DHS within promoter and intergenic regions were analysed with the use of Clover18 to search for over-represented sequence motifs that could identify transcription factor binding sites used in HTE cells. These sequence regions were each analysed in three different groups: all DHS, HTE-selective DHS and ubiquitous DHS. The results of the promoter analyses are given in online supplementary table 4, and the intergenic analyses are in online supplementary table 5. Of particular interest are the comparisons between the intergenic sites for which the representation of motifs is markedly different in the HTE-selective and ubiquitous sites. As expected, the ubiquitous sites contain a high frequency of CTCF-binding motifs, which are over-represented on 23/23 chromosomes but not in HTE-selective sites. CTCF (CCCTC binding factor) sites are often associated with enhancer blocking insulator function19 20 and play a critical role in maintaining higher order chromatin structure.21–23 In contrast, among HTE-selective sites, binding sites for the epithelial-specific Ets transcription factor ELF5 are over-represented on all chromosomes. ELF5 is known to regulate a number of epithelial-specific genes in tissues containing glandular epithelium.24 Also over-represented in the HTE-selective intergenic sites on multiple chromosomes are binding sites for the Forkhead transcription factors FOXA1 (forkhead box A1, hepatocyte nuclear factor 3a, HNF3α, on 19/23 chromosomes) and FOXA2 (forkhead box A2, HNF3β, on 15/23 chromosomes). These factors are thought to be ‘pioneer’ factors that establish the nucleus of a regulatory complex by opening the chromatin to provide access to other proteins.25 FOXA1/2 are involved in the development of multiple endoderm-derived organ systems such as lung, pancreas and prostate (reviewed in Kaestner26). Motifs for Kruppel-like factor 4 (KLF4) binding are also over-represented in HTE-selective intergenic DHS on 19/23 chromosomes. KLF4 is known to play a role in epithelial differentiation and to function as both an activator and a repressor.

HTE-selective sites identify enhancer elements in multiple genes

To further validate our genome-wide data in HTE cells we looked for peaks of open chromatin that coincided with previously characterised regulatory elements. Multiple examples were found, including enhancers in the first introns of peptidylarginine deiminase type 1P7 and aquaporin 5P6 and 5‘ to the keratin 5 gene.29 The location of peaks of open chromatin in HTE cells coinciding with these mapped enhancers are shown in online supplementary figure 3.

HTE-selective sites identify candidate regulatory regions in GWAS

Multiple GWAS have been undertaken to identify novel regions of the genome that contribute to the aetiology of complex lung diseases, such as COPD,30 asthma31–33 and sarcoidosis.34 Some of these studies found the strongest associations with single nucleotide polymorphisms (SNPs) located in introns of genes or in intergenic regions, implicating regulatory elements in the mechanism underlying the association. Similarly, a recent GWAS for modifier loci influencing lung disease severity in cystic fibrosis identified several peaks of association with SNPs in non-coding regions.35 Figure 4C illustrates one of these regions of significant association with CF lung severity on chromosome 11p15, between EHF (Ets homologous factor, epithelial specific) and APAP (APAF1-interacting protein, anti-apoptotic) and the location of the SNP, which shows the highest significance (pink arrow). In HTE cells, multiple regions of open chromatin are evident in this genomic region, some of which are HTE-specific and others are ubiquitous. Further functional analysis is underway to determine whether these DHS contain regulatory elements such as enhancers, and moreover, which genes are associated with sites that are relevant to cystic fibrosis lung disease severity.

DISCUSSION

A greater understanding of the transcriptional networks that distinguish one differentiated cell type from another will be generated by detailed analysis of regulatory elements genome wide in primary cells. Here we present genome-wide open chromatin data on primary HTE cells generated by DNase-seq. These cells represent the most proximal part of a continuous epithelial sheet that lines the respiratory system from the trachea, through bronchi and bronchioles to the gas exchange surface in alveoli. Some differentiated functions are maintained
Airway biology

throughout the epithelium, while others are spatially restricted to different parts of the airway. The generation of additional maps of open chromatin from other primary airway epithelial cell types, such as bronchial cells, will enable bioinformatic comparisons to reveal differences in transcriptional networks and cell-specific regulatory elements in these cell types. This may have significant utility in the clinical management of complex lung disease.

In addition to addressing these more global questions of transcriptional regulation our data provide a valuable resource to search for novel regulatory elements for coordinately regulated gene families and individual genes. One such locus that encodes part of a multi-subunit protein complex and has novel HTE-seq-selective DHS flanking the gene is SCNN1B, which encodes the β subunit of the non-voltage-gated, amiloride-sensitive, epithelial sodium channel. This protein, together with the α and γ subunits encoded by SCNN1A and SCNN1G respectively, is critical to normal fluid transport in the airway epithelium.36–38

Finally, our genome-wide open chromatin data on HTE cells may assist in advancing GWAS for lung diseases, from SNPs associated with a phenotype, to functional elements for mechanistic study. This will be particularly relevant in diseases associated with airway epithelial dysfunction in which critical SNPs are located within non-coding regions of the genome. However, due to the functional complexity of the genome, analysis of these regions should not be restricted to the peaks of open chromatin that coincide with SNPs.

METHODS

HTE cells
Human trachea were collected post mortem from healthy donors. HTE cells were isolated from these trachea and grown as described previously.39

DNase-seq
Two technical replicates of DNase-seq were carried out as described previously32 on two independent cultures of primary HTE cells from different donors. Sequencing by Illumina GAIIx produced 59 642 153 and 40 694 564 reads respectively for HTE cells from different donors. Sequencing by Illumina GAIIx

DNase I hypersensitive sites
Full details of the bioinformatic analysis are provided in the online supplement.

Acknowledgements
We are grateful to Dr M Knowles and members of the Columbia GWAS consortium for sharing data prior to publication; the ENCODE consortium; and Dr K Gaulton for helpful discussions.

Funding
This work was supported by the National Institutes of Health, R01HL094585 (PLAH), NHGRI U54 HG004363 (Pl. GEC) and R01HD088901 (Pl.AH).

Competing interests
None.

Contributors
JMB and AH designed experiments and analysed data. JB, CJO, S-HL, NG, LS and DL performed experiments. TSF, CUC and GEC contributed reagents/analytical tools. JMB and AH wrote the paper.

Provenance and peer review
Not commissioned; externally peer reviewed.

REFERENCES
Azithromycin 250 mg daily reduces exacerbation frequency and improves quality of life in selected COPD patients

This multicentre study randomised 1142 subjects at risk of acute exacerbations of chronic obstructive pulmonary disease (COPD) to receive azithromycin 250 mg daily (n=570) or placebo (n=572) for 1 year, in addition to usual care. The enrolled subjects were allowed to continue on inhaled treatments and/or oxygen. None of the subjects were on oral theophylline. The primary outcome, time to the first exacerbation, was significantly increased to 266 days (95% CI 227 to 313) in the azithromycin group compared with 174 days (95% CI 143 to 215) in the placebo group. The HR for having an acute exacerbation of COPD per patient-year was 0.73 in the azithromycin group compared with the placebo group. The secondary outcomes included quality of life measures (St George’s Respiratory Questionnaire (SGRQ) scores), which improved more in the azithromycin compared with the placebo group. There was no significant reduction in hospitalisation rates and emergency department or urgent care visits and no difference in mortality. Hearing loss was more common in the azithromycin group and increased colonisation with macrolide resistant pathogens was noted.

The authors concluded that the addition of azithromycin to usual care of COPD patients who have had an acute exacerbation in the last year or require oxygen supplementation is a valuable option but careful patient selection is required with the exclusion of patients with or at risk of QTc prolongation, resting tachycardia (>100 beats per minute) and hearing defect. Concern also remains about the long-term effects of daily azithromycin on bacterial resistance patterns in the community. Further studies with mortality, hospitalisations and bacterial resistance as primary end points are warranted.

K D S Pannu

Correspondence to Dr K D S Pannu, ST5, Respiratory Medicine, Basildon University Hospital, Nethermayne, Basildon SS16 5NL, UK; kds_pannu@yahoo.com

Published Online First 13 October 2011

Thorax 2012;67:391. doi:10.1136/thoraxjnl-2011-201189