vessels were significantly smaller (mean diameter: FOP 18±2, NSIP 13±1, UIP 13±1 μm) compared to controls (23±2 μm). Density of lymphatic vessels was significantly reduced in NSIP and UIP (21±2 vs. 20.7±3 vessels/mm²), compared to controls (35±4 vs. 34.5±4 vessels/mm²), and their size was significantly greater (mean diameter: NSIP 11±10 μm, UIP 121±5 μm, controls: 74±9 μm). In controls, 85±6% of the parenchymal lymphatics were close (<100 μm) to a blood vessel, and only 5±4% were in proximity of bronchoalveolar spaces, while in all three disease groups they were less frequently perivascular (FOP 47±6%, NSIP 55±3%, UIP 56±2%) and more frequently associated with the bronchoalveolar lumen (FOP 32±11%, NSIP 85±3%, UIP 69±2%). Lymphatic vessels were rarely seen inside Masson bodies and never inside fibroblastic foci (Abstract S114 figure 1). These data are consistent with a substantial remodelling of lymphatic vessels in fibrotic lung disease, with a shift of lymphatics away from blood vessels.

Introduction

Although neural respiratory drive (NRD), as measured by diaphragm EMG, has been shown to reflect the balance between the respiratory muscle load and capacity providing a marker of disease severity, it requires insertion of an oesophageal catheter which limits its clinical utility. 2nd intercostal space surface EMGpara has been shown to be a useful alternative non-invasive monitoring tool in acute COPD (Murphy et al. Thorax 2011;66;602–8) and overnight in asthma patients (Steier et al. Thorax 2011;66;609–14). Previous data has suggested that there is reduced activation of the chest wall muscles in normal subjects in the supine posture as a consequence of a change in chest wall configuration. To assess the clinical utility and validity of EMGpara to continuously monitor changes in NRD, we investigated the effect of different posture on the EMGpara in normal subjects.

Methods

Wet gcl electrodes were placed at the parasternal edge of the 2nd intercostal space following skin preparation. Signals were amplified and filtered before analogue to digital conversion and digital processing providing the raw signal and root mean squared data. Five positions included sitting at 45 degrees, lying flat, lying on the right and left hand side and sitting at 90 degrees. EMGpara was measured during 2 min of tidal breathing in each posture. Resting EMG signal was normalised to the maximal inspiratory manoeuvres performed in each position (EMGpara%max).

Results

Eight healthy subjects were recruited with a mean age 32 years ±2 years; 4 male; BMI 23±2 kg/m². Mean EMGpara%max was 4.60±3.95% sitting at 45 degrees, 4.82±2.27% lying flat, 5.32±5.91% lying on the right hand side, 4.47±4.47% lying on the left hand side, 4.58±3.75% sitting at 90 degrees. A repeated measures ANOVA showed there was no significant difference in EMGpara%max between the different postures (p=0.97; Abstract S115 figure 1).

Conclusion

NRD, as measured by EMGpara has an indirect relationship with DH.

Spoken sessions

Abstract S114 Figure 1 Two consecutive sections of a VIP biopsy. Movat’s pentachrome staining (A) shows fibroblastic focus stained in light blue. Panel B corresponds to the consecutive section, lymphatic vessels were absent within fibroblastic focus, but are seen in the fibrotic interstitium.

Abstract S115 Figure 1 Box and whisker Plot. Reference position is 45 degrees. There was no difference lying flat (p=0.9), lying on the right hand side (RHS; p=0.7), lying on the left hand side (LHS; p=0.9) and with 90 degrees upright (p=1.0).

Abstract S116

PARASTERNAL MUSCLE ELECTROMYOGRAPHY (EMGpara) REFLECTS OBSERVED CHANGES IN DYNAMIC HYPERINFLATION DURING ACUTE EXACERBATIONS OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE (AECOPD)

doi:10.1136/thoraxjnl-2011-201054b.116

1E Suh, 1M Ramsay, 2S Mandal, 3P Murphy, 2J Steier, 3A Simonds, 4N Hart.

1Department of Asthma, Allergy and Respiratory Science, Division of Asthma, Allergy and Lung Biology, King’s College London, London, UK; 2Lone Fox Respiratory Unit, Guy’s and St Thomas’ NHS Foundation Trust, London, UK; 3National Heart and Lung Institute, Respiratory Biomedical Research Unit, Royal Brompton Hospital and Imperial College London, London, UK; 4Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, National Institute of Health Research Comprehensive Biomedical Research Centre, London, UK

Background

During AECOPD, expiratory flow limitation results in dynamic hyperinflation (DH), respiratory neuromechanical uncoupling, and increased work of breathing causing breathlessness. We have previously demonstrated that 2nd intercostal space EMGpara, as a direct marker of neural respiratory drive (NRD), is able to detect clinical change in hospitalised AECOPD patients. We hypothesised that EMGpara has an indirect relationship with DH.

Method

Patients admitted with AECOPD at a metropolitan teaching hospital were recruited. Inspiratory capacity (IC) was used as a measure of DH. EMGpara, spirometry and IC manoeuvres were measured twice daily from admission until the patient was fit for discharge. Dyspnoea scores (modified Borg score, visual analogue scale).
Patients experiencing a fall in EMG para%max during their admission. Harefield NHS Trust and Imperial College, London, UK

Methods Patients with interstitial lung disease (ILD) performed incremental, symptom-limited cycle ergometry with inspiratory capacity manoeuvres used to measure changes in end-expiratory lung volume (EELV). Twitch transdiaphragmatic pressure (TwPdi), in response to bilateral anterolateral magnetic phrenic nerve stimulation and twitch gastric pressure (TwT10Pga) in response to magnetic stimulation over the 10th thoracic vertebra were used to assess the development of fatigue.

Results Sixteen ILD patients (11 women) were studied. TwPdi did not differ significantly pre and post exercise (21.8±8 vs 20.2±8 cmH2O; p=0.10), while TwT10Pga fell from 28.6±18 to 25.2±14 cmH2O (p=0.02) (Abstract S117 figure 1). EELV fell from 2.18±0.65l to 1.91±0.59l following exercise (p=0.04). The fall in TwT10Pga correlated with peak VO2 (r =−0.52, p=0.041) increase in heart rate (r =0.53 p=0.032) and with the decrease of EELV during exercise (r =0.57, p=0.021). Abdominal muscle fatiguers (n=9, 56%), defined as a ≥10% fall in TwT10Pga, had a fall in EELV of 22±22% compared to 0.7±8% in non-fatiguers (p=0.016).

Conclusion Abdominal muscle fatiguers in ILD patients in association with increased expiratory muscle activity manifest by reduced EELV.

S118 DIRECT VISUALISATION OF COLLATERAL VENTILATION IN COPD WITH HYPERPOLARISED GAS MRI
doi:10.1136/thoraxjnl-2011-201054b.118

Introduction and Objectives Collateral ventilation is important in pathophysiology of Chronic Obstructive Pulmonary Disease (COPD), complicated pneumothorax, and bronchoscopic lung volume reduction surgery but limited observations of it in vivo have been attained. Current techniques capable of imaging collateral ventilation require monitoring over multiple breathing cycles and

Abstract S118 Figure 1 Images tracking collateral ventilation in a COPD patient (A–F), all displayed with the same colour-scale.