that NKT cell deficiency in sarcoidosis results in abnormal monocyte activity.

Methods Twenty-five steroid-naïve non-smoking patients with histological confirmation of sarcoidosis were recruited from the Sarcoidosis-ILD service. Circulating monocyte numbers and phenotype were first characterised using multi-colour flow cytometry. We then isolated monocytes from blood using magnetic microbeads, examined cytokine production after LPS stimulation with intracellular cytokine FACs staining and ELISA, and using monocyte-NKT cell co-culture assays, questioned whether NKT cells affected these monocyte functions.

Results We found an increase in circulating CD14CD16 inflammatory monocytes in patients with sarcoidosis, and identified a population of interleukin 10 producing monocytes in patients and controls after LPS stimulation. Monocytes from sarcoidosis patients have reduced capacity to produce IL-10 after LPS stimulation compared to control (6.57% vs 11.71% of total monocytes, p<0.001, Abstract S109 figure IA); but addition of NKT cells improved this capacity (6.57% to 9.15%, p<0.001, Abstract S109 figure IB). We then questioned the role of IL10-producing monocytes and show (with mixed lymphocyte reaction and CFSE assays) that these cells suppress T cell proliferation (p<0.001, Abstract S109 figure IC).

Conclusions Our data show that sarcoidosis patients have increased inflammatory monocytes but a reduced IL-10-producing, T cell suppressing subset. NKT cells were able to interact with monocytes in vitro and increased IL-10 production by monocytes. These previously unrecognised findings, both in monocyte-NKT cross talk and in sarcoidosis immunobiology, suggest that one consequence of NKT deficiency in sarcoidosis is abnormal monocyte function with resultant loss in control of T cell proliferation. This reveals a potential new pathway of pathogenesis in sarcoidosis.

Abstract S109 Figure 1

S110

TARGETED DELETION OF Gq/11 IN SURFACTANT PROTEIN C-POSITIVE EPITHELIAL CELLS REDUCES TGFß ACTIVATION AND RESULTS IN INFLAMMATION AND ALVEOLAR AIRSPACE ENLARGEMENT

doi:10.1136/thoraxjnl-2011-201054b.110

1E McGrath, 1A Lawrie, 1H Marriott, 2P F Mercer, 1S S Cross, 2R C Chambers, 1D H Dockrell, 1M K B Whyte. 1University of Sheffield, Sheffield, UK; 2University College London, London, UK

Introduction The concept of driving cellular apoptosis as a potential therapy for diseases characterised by inappropriate cellular persistence or proliferation is of widespread interest. We previously showed a death receptor ligand, TRAIL, accelerates neutrophil apoptosis without associated cell activation (J Immunol 170:1027–33) and other work revealed TRAIL-induced apoptosis of human lung fibroblasts. The aims of this project were to study the role of TRAIL in a bleomycin lung injury model in wild-type and TRAIL–/– mice and in patients with idiopathic pulmonary fibrosis (IPF).

Methods Mice received intratracheal bleomycin or saline control. Bronchoalveolar lavage (BAL) at 5, 7, 16 and 25 days was analysed by cytospin morphology and haemocytometer count for % neutrophils, % neutrophil apoptosis, total number of neutrophils and total number of apoptotic cells. Flow cytometry was also used to analyse apoptosis. Collagen deposition in whole lung samples was analysed using a hydroxyproline assay. TRIAD expression and TUNEL positive events were also analysed. Serum and lung tissue was analysed to analyse apoptosis. Collagen deposition in whole lung samples was analysed using a hydroxyproline assay. TRIAD expression and TUNEL positive events were also analysed. Serum and lung tissue was analysed to analyse apoptosis. Collagen deposition in whole lung samples was analysed using a hydroxyproline assay. TRIAD expression and TUNEL positive events were also analysed. Serum and lung tissue was analysed to analyse apoptosis. Collagen deposition in whole lung samples was analysed using a hydroxyproline assay. TRIAD expression and TUNEL positive events were also analysed. Serum and lung tissue was analysed to analyse apoptosis. Collagen deposition in whole lung samples was analysed using a hydroxyproline assay. TRIAD expression and TUNEL positive events were also analysed. Serum and lung tissue was analysed to analyse apoptosis. Collagen deposition in whole lung samples was analysed using a hydroxyproline assay. TRIAD expression and TUNEL positive events were also analysed. Serum and lung tissue was analysed to analyse apoptosis. Collagen deposition in whole lung samples was analysed using a hydroxyproline assay. TRIAD expression and TUNEL positive events were also analysed. Serum and lung tissue was analysed to analyse apoptosis. Collagen deposition in whole lung samples was analysed using a hydroxyproline assay. TRIAD expression and TUNEL positive events were also analysed. Serum and lung tissue was analysed to analyse apoptosis. Collagen deposition in whole lung samples was analysed using a hydroxyproline assay. TRIAD expression and TUNEL positive events were also analysed. Serum and lung tissue was analysed to analyse apoptosis. Collagen deposition in whole lung samples was analysed using a hydroxyproline assay. TRIAD expression and TUNEL positive events were also analysed. Serum and lung tissue was analysed to analyse apoptosis. Collagen deposition in whole lung samples was analysed using a hydroxyproline assay. TRIAD expression and TUNEL positive events were also analysed. Serum and lung tissue was analysed to analyse apoptosis. Collagen deposition in whole lung samples was analysed using a hydroxyproline assay. TRIAD expression and TUNEL positive events were also analysed. Serum and lung tissue was analysed to analyse apoptosis. Collagen deposition in whole lung samples was analysed using a hydroxyproline assay. TRIAD expression and TUNEL positive events were also analysed. Serum and lung tissue was analysed to analyse apoptosis. Collagen deposition in whole lung samples was analysed using a hydroxyproline assay. TRIAD expression and TUNEL positive events were also analysed. Serum and lung tissue was analysed to analyse apoptosis. Collagen deposition in whole lung samples was analysed using a hydroxyproline assay. TRIAD expression and TUNEL positive events were also analysed. Serum and lung tissue was analysed to analyse apoptosis. Collagen deposition in whole lung samples was analysed using a hydroxyproline assay. TRIAD expression and TUNEL positive events were also analysed. Serum and lung tissue was analysed to analyse apoptosis. Collagen deposition in whole lung samples was analysed using a hydroxyproline assay. TRIAD expression and TUNEL positive events were also analysed. Serum and lung tissue was analysed to analyse apoptosis. Collagen deposition in whole lung samples was analysed using a hydroxyproline assay. TRIAD expression and TUNEL positive events were also analysed. Serum and lung tissue was analysed to analyse apoptosis. Collagen deposition in whole lung samples was analysed using a hydroxyproline assay. TRIAD expression and TUNEL positive events were also analysed. Serum and lung tissue was analysed to analyse apoptosis. Collagen deposition in whole lung samples was analysed using a hydroxyproline assay. TRIAD expression and TUNEL positive events were also analysed. Serum and lung tissue was analysed to analyse apoptosis. Collagen deposition in whole lung samples was analysed using a hydroxyproline assay. TRIAD expression and TUNEL positive events were also analysed. Serum and lung tissue was analysed to analyse apoptosis. Collagen deposition in whole lung samples was analysed using a hydroxyproline assay. TRIAD expression and TUNEL positive events were also analysed. Serum and lung tissue was analysed to analyse apoptosis. Collagen deposition in whole lung samples was analysed using a hydroxyproline assay. TRIAD expression and TUNEL positive events were also analysed.