Poster sessions

Results 41 patients with COPD were recruited (PLB n=22, control n=19); mean (SD) age 63 (11) years, mean (SD) FEV1,% predicted 47 (15.80)%. There was no statistically significant difference between groups in the primary outcome measures and in retrospect the RCT was insufficiently powered. Post hoc analysis found effect sizes for primary outcome measures were: CRQ-SR dyspnoea 0.05, mastery 0.48 and ESWT 0.44. For secondary outcome measures unpaired t-test showed a significant (p=0.02) reduction in oxygen desaturation on ESWT in favour of PLB group.

Conclusion This study showed PLB practised over 8 weeks resulted in reduced physiological stress with respect to oxygen desaturation when performing a standardised endurance walk. Additionally it raises questions regarding use of a health related quality of life dyspnoea tool when investigating PLB. To date beneficial effect of PLB on dyspnoea related to exercise has only been shown using the Borg breathlessness score (Nield et al, 2007).

REFERENCE

NIV: COPD, neuromuscular disease and obesity

P266 LATE VENTILATION IS ASSOCIATED WITH HIGH IN-HOSPITAL MORTALITY IN PATIENTS HOSPITALISED WITH ACUTE EXACERBATIONS OF COPD
doi:10.1136/thoraxjnl-2011-201054c.266

1J Steer, 2G J Gibson, 3S C Bourke. 1Department of Respiratory Medicine, North Tyneside General Hospital, Northumbria Healthcare NHS Foundation Trust, North Shields, UK; 2Newcastle University, Newcastle-upon-Tyne, UK

Background Patients with severe acute exacerbations of COPD (AECOPD) often require treatment with non-invasive ventilation (NIV). The BTS audit reported that patients who develop respiratory acidosis and require NIV after 24 h in hospital have a high mortality risk but this relationship has not been investigated prospectively.

Methods Consecutive patients hospitalised with AECOPD and receiving assisted ventilation (NIV or IPPV) were identified. Demographic information, time from admission to commencement of ventilation, arterial blood gases at admission and at time of development of respiratory acidosis (if different), and outcomes of treatment were recorded.

Results 195 of 920 patients admitted with AECOPD were initially treated with NIV and four were ventilated invasively. Mean (SD) age was 73.6 (9.8) years, and most: were female (61.4%); had experienced frequent exacerbations in the previous year (median 3, IQR 1–4); were of normal weight (mean (SD) BMI 25.1 (7.0) kg/m²); and had severe airflow obstruction (mean (SD) FEV1, 58.1 (16.1) % predicted). 27.6% of patients had received NIV previously for treatment of AECOPD, and 81 (40.7%) patients had coexistent pneumonia on admission.

Median duration of ventilation was 4 days (IQR 1.5–5) and four of the patients who initially received NIV progressed to invasive ventilation. 49 (24.6%) patients died in-hospital. The risk of death increased with longer time from hospital admission to ventilation commencement (Abstract P266 figure 1), with more than 60% of patients who required ventilation after day 2 of their hospital admission not surviving to discharge.

Conclusion Mortality in AECOPD is particularly high in patients who deteriorate and require ventilation after day 2 of the admission. The time from admission to needing ventilation (NIV or IPPV) should inform clinicians considering the prognosis of patients hospitalised with AECOPD.

REFERENCE

P267 ASSOCIATION OF THE LENGTH OF NON-INVASIVE VENTILATION (NIV) WITH ARTERIAL BICARBONATE LEVEL IN COPD PATIENTS WITH ACUTE HYPERCAPNIC RESPIRATORY FAILURE (AHRF)
doi:10.1136/thoraxjnl-2011-201054c.267

1A Thomas, 2B Beauchamp, 1L Dyal, 2B Chakraborty, 1D Banerjee, 1E Gallagher, 1R Mukherjee. 1Heart of England NHS Foundation Trust, Birmingham, UK; 2School of Mathematics, University of Birmingham, Birmingham, UK

Introduction Following the British Thoracic Society (BTS) NIV audit 2011 we noted that our institution’s length of stay was longer than the national average. Factors related to length of stay are complex and related to a lot of non-medical factors, however length (duration) of NIV treatment is not. Although the associations of mortality of COPD patients requiring NIV are well-documented (Non-invasive ventilation (NIV) in chronic obstructive pulmonary disease (COPD) exacerbations with AHRF with pH<7.26. Thomas
CAN WE IMPROVE "DOOR-TO-MASK" TIMES FOR PATIENTS WITH CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD) REQUIRING NON-INVASIVE VENTILATION (NIV)?

doi:10.1136/thoraxjnl-2011-201054c.268

S Mandal, T Q Howes, CM Roberts. Colchester University Hospital Trust, Colchester, UK; Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK

Introduction COPD is a leading cause of mortality and morbidity and timely use of NIV improves outcomes. National guidelines recommend early intervention in persisting acidosis however, audit data suggests that many patients receive NIV late and have high mortality compared to the pH, length of NIV is more closely linked to the HCO3. This is explained by the fact that people with higher HCO3 are likely to have had chronic respiratory failure for longer and likely to take longer to recover from the respiratory failure.

Methods A retrospective analysis of the initial ABG values on 67 episodes of NIV for COPD at a dedicated respiratory NIV unit from 1 November 2010 to 30 June 2011 was carried out. Analysis of blood gases and duration of use of NIV was documented and analysed.

Results In an 8-month period, 67 patients were admitted to the NIV unit with AHRF with COPD. There were 6 (8.95%) in-hospital deaths in this group. Mean (range) pH on admission was 7.26 (7.08–7.34), mean (range) pCO2 was 9.75 kPa (6.03–15.5), mean (range) arterial bicarbonate level (HCO3) 27.2 mmol/l (19.9–45.2). The mean peak Inspiratory Positive Airway Pressure (IPAP) used was 18.7 cm H2O and peak Expiratory Positive Airway Pressure (EPAP) was 5.4 cm H2O. Plotting a graph with HCO3 and length of NIV we see that it has a linear relationship (see Abstract P267 figure 1). Length of NIV increases by 0.294 days for every 1 mmol/l increase in HCO3 above the mean.

Discussion This scientific survey indicates that the length of NIV therapy in COPD patients in AHRF increases with a higher HCO3. Though outcome and mortality is closely linked to the pH, length of NIV is more closely linked to the HCO3. This is explained by the fact that people with higher HCO3 are likely to have had chronic respiratory failure for longer and likely to take longer to recover from the respiratory failure.

FEASIBILITY AND ACCEPTABILITY OF NON-INVASIVE VENTILATION (NIV) AS AN AID TO EXERCISE IN PATIENTS ADMITTED WITH ACUTE EXACERBATION OF CHRONIC RESPIRATORY DISEASE

doi:10.1136/thoraxjnl-2011-201054c.269

F Dyer, F Bazari, C Jolley, L Flude, V Lord, M1 Polkey, N S Hopkins. NIHR Respiratory Disease Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation Trust and Imperial College, London, UK

Introduction Patients with acute exacerbations of chronic respiratory disease are often too breathless to exercise, leading to muscle deconditioning. Using NIV to assist exercise during an exacerbation might prevent this, but it is not known if this is acceptable to patients.

Methods 12 in-patients with an acute exacerbation (including Bronchiectasis and CF) were recruited. If they were unable to cycle for 5 min at 20 Watts unassisted they then cycled with NIV for up to 20 min. NIV settings were adjusted to patient comfort. Patients were asked to rate their level of distress and willingness to repeat the intervention.

Abstract P269 Table 1 Times cycled and change in parameters with exercise

<table>
<thead>
<tr>
<th></th>
<th>Without NIV</th>
<th>With NIV</th>
<th>Difference (95% CI)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time cycled (s)</td>
<td>184.42</td>
<td>331.08</td>
<td>146.67 (7.70 to 285.62)</td>
<td>0.04</td>
</tr>
<tr>
<td>Resting SpO2</td>
<td>94.83 (2.17)</td>
<td>94.83 (2.55)</td>
<td>0.0 (−1.92 to 1.92)</td>
<td>1.00</td>
</tr>
<tr>
<td>Resting HR</td>
<td>94.33 (16.99)</td>
<td>93.83 (18.45)</td>
<td>0.5 (−5.75 to 6.75)</td>
<td>0.86</td>
</tr>
<tr>
<td>Change in SpO2</td>
<td>7.33 (5.12)</td>
<td>−3.83 (4.90)</td>
<td>FN</td>
<td>0.029</td>
</tr>
<tr>
<td>Change in HR</td>
<td>16.33 (11.54)</td>
<td>16.73 (13.46)</td>
<td>FN</td>
<td>0.93</td>
</tr>
<tr>
<td>End Borg Dyspnea</td>
<td>3.72 (1.90)</td>
<td>3.86 (1.87)</td>
<td>FN</td>
<td>0.52</td>
</tr>
<tr>
<td>End Borg RPE</td>
<td>11.36 (2.29)</td>
<td>11.00 (2.86)</td>
<td>FN</td>
<td>0.93</td>
</tr>
</tbody>
</table>

All data presented as mean (SD) or median (range). *Paired t test. †Wilcoxon signed rank test. ‡Fisher exact test. FN, failed normality test.