CT in COPD: just a pretty picture or really worth a thousand words (or dollars)?

Don D Sin,1,2 Jonathon Leipsic,3 S F Paul Man1,2

We like pretty pictures and, in pulmonary medicine, we use computed axial tomography (CT) to generate pretty pictures to help us diagnose and manage patients with respiratory complaints. In 2007 more than 10 million chest CT scans were performed across the USA, representing an astounding 11 000% increase in the CT rate since 1980.1 CT scans rely on ionising radiation to generate images, and recent estimates suggest that CT scans may be responsible for 24% of the total ‘background’ radiation to which the population is exposed in a given year.2 Thankfully, there are several large-scale efforts to reduce the radiation exposure related to CT scans and to mitigate the health risks imposed by ionising radiation.3 What is not being adequately addressed is the issue of economic costs (and beneﬁts) of CT scans. CT scans are expensive for patients and to the healthcare system, with prices ranging from $500 to $1500 per scan.4 Recently, the cost-effectiveness ratio of lung cancer screening with CT scans was reported to be $2.5 million dollars per quality-adjusted life saved,5 providing us with a sobering reminder that these ‘pretty pictures’ are not without significant costs.

Chronic obstructive pulmonary disease (COPD) is a condition that lends itself to anatomical medical imaging. For practical reasons, COPD is largely defined based on spirometric criteria. However, there is general discontent with this approach because spirometric measurements are relatively insensitive and correlate only very loosely with histological abnormalities or with patient symptoms or outcomes.6 Furthermore, spirometric measurements are poorly responsive to medical interventions (even those that are known to improve morbidity and mortality) and cannot discriminate the major pathological subphenotypes of COPD—emphysema and small airways disease.6 More complete and elaborate lung function measurements provide more information but they are expensive, time-consuming, difficult to standardise and relatively inaccessible beyond large hospitals, making them non-user friendly for many practising physicians. On the other hand, high-resolution CT (HRCT) provides the clinicians with excellent anatomical detail and takes away the veil and mystery of lung function measurements. With continued evolution and reﬁnement of this technology, the hope is that HRCT will one day complement (or even replace) lung function measurements in diagnosing and managing patients with COPD in routine clinical practice. However, is this notion realistic?

It is now well established that some current and former smokers with no or minimal pulmonary symptoms can have normal forced expiratory volume in 1 s (FEV1) and ratio of FEV1 to forced vital capacity (FVC) but still harbour signiﬁcant emphysematous changes in their lungs.7 The clinical relevance of this observation, however, was unknown. The study by Mohamed Hoessein et al8 offers an answer to this clinical conundrum. Using data from 2085 current and former heavy smokers who enrolled in the Dutch—Belgian Lung Cancer Screening Trial (NELSON), Mohamed Hoessein and colleagues showed that individuals with the largest burden of CT-based ‘emphysema’ experienced the fastest decline in lung function over 3 years of follow-up. This effect was independent of age, smoking status or baseline lung function of these individuals.8 These data are in keeping with those of Yuan et al9 who showed that lung ‘overinﬂation’ was associated with a rapid decline in FEV1. However, owing to the small sample study (n=143), Yuan et al could not show a relationship with more traditional CT-based measures of emphysema.7 The physiological rationale for the relationship between CT-based emphysema, lung ‘overinflation’ and rapid decline in lung function is obscure, but several possibilities exist. Although, in general, mild degrees of lung emphysema do not result in airﬂow limitation, they can lead to air trapping and lung ‘overinflation’.5 However, with emphysema progression, airﬂow limitation ensues owing to reductions in elastic recoil pressure and loss of alveolar attachments10 which leads to narrowing and premature closure of airways. Alternatively, it is possible that CT-based measures of emphysema may just be a marker of pathological changes in the small airways (eg, remodelling and ﬁbrosis) that may be the more salient drivers of COPD progression but cannot be well visualised on HRCT scans.

The study by Mohamed Hoessein et al (see page 782) has several limitations that deserve emphasis. First, emphysema is a pathological (and not a radiological) diagnosis and in this study there was no histological conﬁrmation of CT-based assessment of emphysema. Furthermore, the study used only one metric to evaluate emphysema—the extent of low attenuation areas. This could have confounded the results. Third, only one follow-up spirometric value was obtained, making it possible that ‘regression to the mean’ could have confounded the results. The NELSON trial is a lung cancer screening study which uses low-dose CT scans for early detection of malignant tumours. The final results from this trial are not expected until 2015.12 Thus, the current study by Mohamed Hoessein et al could not provide any data on the relationship between CT measures of emphysema and the subsequent risk of lung cancer, which is the leading cause of mortality in patients with mild COPD.13 However, a previous study by Wilson et al14 which used CT scans collected in a different lung cancer screening programme suggests that smokers with emphysema on CT scans have a signiﬁcantly increased risk of lung cancer, independent of their lung function. Together, the data by Mohamed Hoessein et al and Wilson et al indicate that CT-based measurements of emphysema in smokers

Reference

1. UBC James Hogg Research Center, St Paul’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada; 2Department of Medicine, Respiratory Division, University of British Columbia, Vancouver, British Columbia, Canada; 3Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada

Correspondence to Don D Sin, St Paul’s Hospital, University of British Columbia, Room 8442, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada; don.sin@hli.ubc.ca

Thorax September 2011 Vol 66 No 9 741
Every breath you take

Allan R Glanville

To paraphrase the ubiquitous warning applied to the perverse products of the tobacco industry, ‘breathing may be dangerous to your health’, in particular if you are a lung transplant recipient. This is especially true if you live near a major road in a region with high levels of traffic-related air pollution. Alone among solid organ transplants, the lung allograft is exposed to the ambient environment with every breath. Some environments are toxic, some more so, and the paper by Nawrot et al in Thorax (see page 748) presents a compelling argument that traffic air pollution is a strong component of the toxic environmental risk which has measurable and deleterious effects on pulmonary allograft function and recipient survival, accounting for 25% of deaths.\(^1\) Specifically, this landmark study reports for the first time the relationship between traffic air pollution and the development of the bronchiolitis obliterans syndrome (BOS) in a large and well-characterised sample of lung transplant recipients from a region where air pollution levels are high by global standards. BOS is the major risk factor for death after lung transplantation, so it is not surprising that exposure to air traffic pollution, defined by residential proximity to a major road, was also a risk factor for death after transplantation. Importantly, other potential risk factors were rigorously examined to prevent confounding and the relationship was highly significant regardless of whether distance categories from a main road were expressed as a dichotomous or continuous variable. In addition, there was a strong relationship between distance from a main road and the finding of a bronchoalveolar lavage neutrophilia, an association that implies but does not prove an aetiological link. Importantly, it makes biological sense. The findings are illuminating and may explain in part some of the reported

Correspondence to Professor Allan R Glanville, The Lung Transplant Unit, Xavier 4, St Vincent’s Hospital, Victoria Street, Darlinghurst, NSW 2010, Australia; a.glanville@svhcentres.com.au

REFERENCES