Exit of leucocytes across the alveolar epithelium worsens lung injury

Persson and Uller are to be commended for their review highlighting the important role of leucocyte egression in the resolution of airway inflammation. They go on to speculate that egression across the alveolar epithelium may be detrimental, because, unlike for the airways, there is no mucociliary escalator, and luminal cells that are not removed will interfere with gas exchange. They allay this concern citing work from Cory et al. using a mouse model of asthma. In this model, a deficiency of matrix metalloproteinase (MMP)-2 and/or MMP-9 inhibits leucocyte egression across the airway epithelium and leucocytes accumulate in the interstitium around the bronchial wall. The MMP-2/MMP-9 knock-out (KO) mice died from asphyxia (presumably from bronchoconstriction). The wild type (WT) mice survive with less peribronchovascular inflammation, but more mild diffuse alveolar inflammation than the KO's.

Persson and Uller present this as evidence that egression into the alveolar airspace, as for the airway lumen, may also be beneficial. But it would be dangerous to extrapolate this to other inflammatory diseases for two reasons. First, the leucocytes may have reached the alveolar space not by crossing the alveolar epithelium, but from overspill of the exuberant egression into the airway lumen. Second, in the asthma model described death is by bronchoconstriction and modest alveolar inflammation may be tolerated. In addition, the hazards of egression have been convincingly demonstrated in a murine model in which bleomycin inhalation is used to induce alveolar (rather than airway) inflammation. Li and colleagues found that MMP-7 deficiency was protective against death following bleomycin lung injury. They went on to show, very elegantly, that MMP-7 is required to establish the chemotaxtractant gradient that drives leucocyte egression across the alveolar wall. The protective effect of the MMP-KO was reversed when n-formyl-n-leu-leu-phe (fNfLP) was instilled with bleomycin, and egression of leucocytes into the alveolar airspace was re-established. There is still much to be learnt about egression, and in particular the complex regulation and interplay of extravasation and egression in inflammation and resolution of disease. Our own research examines the molecular differences involved in egression across distinct epithelial barriers (alveolar vs bronchial), with a view to enhance the transepithelial exit of leucocytes across the bronchial epithelium (beneficial) while limiting their exit across the alveolar epithelium (detrimental). The ability to differentially alter the exit of leucocytes across distinct epithelial barriers may be essential when designing drugs and biological compounds to enhance the resolution of inflammation.

Joanna C Porter
Correspondence to Dr Joanna C Porter, University College London, London, UK; joanna.porter@ucl.ac.uk

Competing interests None.
Provenance and peer review Not commissioned; not externally peer reviewed.
Accepted 17 December 2010
Published Online First 20 April 2011
doi:10.1136/thx.2010.157065

REFERENCES

Authors’ response
We obviously agree with Porter on the need to make a distinction between egression of infiltrated leucocytes across mucosal epithelia, where a swift further elimination of the lumen cells can be expected to occur (nasal, tracheobronchial, gut, bladder), and the bronchial–alveolar epithelial linings where there is a risk of undesirable accumulation of lumen cells. We repeat this cautionary note in an extended review on resolution of cell-mediated respiratory diseases where we discuss a role of egression in the elimination not only of granulocytes and lymphocytes but also of mast cells and dendritic cells. We further discuss how elimination of leucocytes through egression can be compatible with the use of sputum cell counts to adjust treatment in asthma. The concept developed in our two reviews is underpinned foremost by clinical observations and experimental findings in patients. We were indeed surprised to find that numerous, human, so far little understood, in vivo supported data re-established the resolving role of transepithelial egression whereas little support for the role of leucocyte apoptosis, the accepted paradigm, emerged. However, Porter’s comments mainly concern mouse model findings. Of interest are supporting findings in murine (mouse and rat) models of ‘asthma’ indicating that inhibition of egression can have serious respiratory consequences. We are aware of severe limitations of mouse models but felt that these data should be discussed. We also speculated that cell traffic in mouse airways, better than cell activation, could be relevant. However, the distinction between bronchial and alveolar egression is not always well made.