Bronchoalveolar lavage immunodiagnosis for tuberculosis suspects in Europe and Africa

We read with interest the article by Dheda et al1 who followed our approach for a rapid diagnosis of smear-negative tuberculosis by bronchoalveolar lavage (BAL) enzyme-linked immunospot (ELISpot)2 in a country of high tuberculosis incidence, including individuals with HIV-1 infection.

The authors report a sensitivity of 89.9% and specificity of 94.7% of the BAL ELISpot test (T-Spot.TB) for the diagnosis of tuberculosis in suspects with scarce or negative acid-fast bacilli (AFB) smutum smears. This observation is important, as it confirms the findings of other recent studies performed in low tuberculosis incidence countries where flow cytometric assays were performed with BAL cells in order to obtain a rapid diagnosis of tuberculosis.3 4 However, flow cytometry is technically more demanding and time-consuming than ELISpot.

Results from the largest study performed on this topic to date, a recent prospective multicentre TBNET study, showed that the BAL ELISpot is superior to blood ELISpot, tuberculin skin test and Mycobacterium tuberculosis-specific nucleic acid amplification to diagnose sputum smear-negative tuberculosis.5

However, an important difference between this study and that of Dheda et al is the high frequency of indeterminate BAL ELISpot test results (9.2% vs 33.7%) that could be related to different cell processing protocols. Fifty-four percent of indeterminate results in the cohort from South Africa could be related to different cell processing ELISPOT test results (9.2% vs 33.7%) that the high frequency of indeterminate BAL ELISpot results (33.7%) that the reason for indeterminate results was the negative control. These are probably pre-stimulated terminally differentiated, interferon-gamma (IFN-g) without stimulation in the negative control. This probably prestimulated terminally differentiated, cytokine-secreting effector T cells.

Different definitions of indeterminate test results are another important explanation for the observed variability between the two studies. When we reanalysed the data set of the TBNET study with the cut-offs used by Dheda et al, the sensitivity and specificity of the BAL ELISpot for the detection of sputum AFB smear-negative tuberculosis changed from 90.9% and 79.9% to 87.2% and 88.1%, and the frequency of indeterminate test results increased to 30.5%. Therefore, it would be interesting to know whether application of the cut-off used in the TBNET study will substantially reduce the proportion of indeterminate test results in the study by Dheda et al.

Christoph Lange,1 Aik Bossink,2 Ralf Eberhardt,3 Delia Goletti,4 Claudia Jafari,5 Irene Latorre,5 Detlef Kirsten,6 Monica Losi,7 Giovanni B Migliori,8 Giovanni Sotgiu9

1Clinical Infectious Diseases, Research Center Borstel, Germany; 2Pulmonary Disease, Diakonessenhuis, Utrecht, The Netherlands; 3Pulmonary and Critical Care Medicine, University Heidelberg Thoraxclinic, Heidelberg, Germany; 4Translational Research Unit, National Institute for Infectious Diseases, Rome, Italy; 5Department of Microbiology, Hospital University Georgiansenstr Trias i Pujol, Ciber Enfermedades Respiratorias, Instituto de Salud Carlos III, Badalona, Spain; 6Pneumology, Hospital Großhadern, Großhadern, Germany; 7Department of Oncology, Hematology and Respiratory Diseases, University of Modena and Reggio Emilia, Italy; 8WHO Collaborating Centre for TB and Lung Diseases, Fondazione S. Maugeri, Care and Research Institute, Tradate, Italy; 9Hygiene and Preventive Medicine Institute, University of Sassari, Italy

Correspondence to Dr Christoph Lange, Clinical Infectious Diseases, Research Center Borstel, Parkallee 35, D-23845 Borstel, Germany; clange@fz-borstel.de

Competing interests None.

Patient consent Obtained.

Ethics approval This study was conducted with the approval of the Ethical Review Boards of all TBNET study centres involved.

Provenance and peer review Not commissioned; not externally peer reviewed.

Accepted 20 September 2009
Thorax 2010; 65:842
doi:10.1136/thx.2009.124958

REFERENCES


Authors’ response

We thank Lange and colleagues for their insightful comments about our data.1 In our study, one-third of the bronchoalveolar lavage (BAL) enzyme-linked immunospot (ELISpot) test results were indeterminate. Lange et al pose the question of whether the number of indeterminate results could be reduced by redefining the cut-off point used for the analysis.

There were 28/83 indeterminate results (33.7%), of which less than half (13/28 or 46.4%) were due to high spot counts in the negative control well. When we reanalysed the data with the cut-off point used by Lange and colleagues,1 four additional subjects had valid results. On reanalysis the sensitivity remained unchanged and the specificity was marginally reduced from 93.73% (95% CI 79.85 to 98.27) to 91.67% (95% CI 78.17 to 97.15). Many of the high spot counts in the negative control well were not close to the cut-off point. In our original analysis we were not able to reduce the number of indeterminate results without significantly compromising the sensitivity when changing the cut-off point of the negative control. Furthermore, in most cases there was little difference between the counts in the negative control and antigen-specific wells, suggesting an effect of terminally differentiated effector cells rather than one attributed to antigen-specific cells.

Nevertheless, we found that 53.6% (15/28) of our indeterminate results were due to failure of the positive control. We showed that using staphylococcal enterotoxin B (SEB), in addition to phytohaemagglutinin (PHA), substantially reduced failure of the positive control (25–3%; p=0.02). We estimate that if SEB was used as a positive control throughout the study then the proportion of inconclusive RD-1 ELISpot results would have dropped from 34% to 25%. We therefore recommend that SEB and PHA be used as positive controls in the BAL ELISpot assay.

In addition to the selection of cut-off points, the variable performance (sensitivity and specificity) of these assays are to be expected given the differences in methodological and technical aspects (skills of the bronchoscopist, lavage technique and the BAL processing protocol), tuberculosis case definitions (culture confirmation alone vs a clinical definition for tuberculosis) and the populations studied.3 4 What both studies indicate, however, is that a BAL ELISpot would approximately double the yield of a rapid positive diagnosis over a smear alone. This additive value makes the test clinically promising. Further studies refining the assay and validating the cut-off points used in different settings are now required.

Richard N van Zyl-Smit,1 Richard Meldau,1 Keertan Dheda2,3,5

1Lung Infection and Immunity Unit, Division of Pulmonology and UCT Lung Institute, Department of Medicine, University of Cape Town, South Africa; 2Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa; 3Centre for Infectious Diseases and International Health, Department of Infectious, UCT Medical School, London, UK

Correspondence to Richard N van Zyl-Smit, J Floor OMB Groote Schuur Hospital, University of Cape Town, 7925 Observatory, Cape Town, South Africa; rvs@iafrica.com

Competing interests None.

Provenance and peer review Not commissioned; not externally peer reviewed.

Accepted 20 September 2009
doi:10.1136/thx.2009.126185

Carlos III, Badalona, Spain; 6Pneumology, Hospital University of Modena and Reggio Emilia, Italy; 8WHO Oncology, Hematology and Respiratory Diseases, München, Großhandorf, Germany; 7Department of Pulmonology, Hematology and Respiratory Diseases, Fondazione S. Maugeri, Care and Research Institute, Tradate, Italy; 9Hygiene and Preventive Medicine Institute, University of Sassari, Italy