










as a potent inducer of EMT.17 32 In the present study, we report
that SNAI transcription factors are key regulators of TGFb1-
induced EMT in the lung. Elevated expression of SNAI1 and
SNAI2 was observed in ATII cells in response to TGFb1 in vitro.
Depletion of SNAI1 and SNAI2 using siRNA knock-down in
ATII cells inhibited TGFb1-induced alterations in EMT marker
gene expression and ATII cell migration in response to TGFb1.
Interestingly, ectopic overexpression of SNAI transcription factors
promotes EMT even in the absence of TGFb1. Finally, an
increased level of SNAI1 and SNAI2 in experimental and human
IPF in vivo further indicated a significant contribution of SNAI
transcriptions factors to the process of EMT in lung fibrosis.

At the onset of our studies, we performed a detailed analysis
of the occurrence of EMT in ATII cells in response to TGFb1,

determining marker gene and protein expression and localisa-
tion in primary mouse ATII cells and A549 cells. Upon exposure
to TGFb1, ATII cells demonstrated an increased expression of
mesenchymal markers (such as aSMA) with a corresponding
decrease in epithelial markers (ECAD and TJP1), suggestive of
EMT. EMT was further corroborated by the presence of aSMA
and TJP1 double-positive cells in TGFb1-treated, but not in
untreated cells. These results are in accordance with previous
studies, reporting that TGFb1 induces EMT in lung epithelial
cells in vitro.11 19–21 Recently, TGFb1-induced EMT has also been
demonstrated in vivo in a triple transgenic mouse model.12

Several regulatory molecules have been implicated in the
process of EMT.13 17 Here, we demonstrated increased expres-
sion and nuclear translocation of the zinc finger transcription

Figure 5 Effect of SNAI transcription factor silencing on transforming growth factor b1 (TGFb1)-induced epithelial–mesenchymal transition in alveolar
epithelial type II (ATII) cells. (A, C) Using quantitative reverse transcription-PCR (RT-PCR) analysis, the expression patterns of EMT marker genes was
assessed in A549 cells after treatment with small interfering RNA (siRNA) against SNAI1 (A) and SNAI2 (C), with TGFb1 exposures for 24 h and
compared with control non-specific scrambled siRNA treatment with TGFb1 exposures for 24 h. (B, D) Semi-quantitative RT-PCR analysis; the
expression patterns of EMT marker genes was detected in A549 cells after siRNA treatment against SNAI1 (B) and SNAI2 (D), with TGFb1 exposures
for 24 h (lane 4) and compared with controls (1) non-specific scrambled siRNA treatment with (lane 3) or without (lane 1) TGFb1 for 24 h and (2)
siRNA against SNAI without TGFb1 treatment (lane2). HSPA8 (heat shock 70 kDa protein 8) was employed as loading control. Data are representative
of three independent experiments and are expressed as mean (SEM); * p,0.05, n = 3. ECAD, e-cadherin; OCCL, occludin; scr; scrambled siRNA
oligonucleotide; aSMA, a-smooth muscle actin; TJP1, tight junction protein 1; VIM, vimentin.
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factors SNAI1 and SNAI2 along with EMT in ATII cells. Elevated
levels of SNAI1 mRNA have been reported in TGFb1-treated A549
cells,22 which has been further confirmed in this study. In
addition, SNAI1 induction by TGFb1 has been recently demon-
strated in MDCK cells, a canine renal epithelial cell line.33

Furthermore, it has been demonstrated that SNAI1-deficient
mice die at the gastrulation stage,34 because of their inability to
undergo EMT, reinforcing the importance of the SNAI transcrip-
tion factors in the process of embryonic development.

The impact of SNAI-mediated EMT in pathophysiological
conditions such as cancer or tissue fibrosis, however, is less well
substantiated and requires further investigations. Recently, high
SNAI expression has been associated with poor prognosis and
tumour recurrence in patients with lung cancer.35 In addition,
SNAI1 has been reported to induce chemoresistance of cancer
cells.36 In tissue fibrosis, SNAI-mediated EMT has been proposed
to be involved in kidney fibrosis.37 The comprehensive analysis
presented herein strongly suggests that SNAI1 and SNAI2 are
essential mediators involved in the initiation and perpetuation
of TGFb1-mediated EMT in experimental and human IPF, but

Figure 6 Effect of SNAI transcription factor silencing on transforming
growth factor b1 (TGFb1)-induced migration in alveolar epithelial type II
(ATII) cells. The small interfering RNA (siRNA)-treated A549 cells were
treated or not with TGFb1 for 24 h. The relative migration potential was
assessed using Boyden chamber assay. scr; scrambled siRNA
oligonucleotide. Membranes were scanned and the intensity is
represented as bars. Data are representative of three independent
experiments and are expressed as mean (SEM); * p,0.05, n = 3.

Figure 7 SNAI transcription factor expression in experimental lung fibrosis. Mice were exposed to bleomycin, and lungs were harvested after 7 or
14 days, as indicated. (A) RNA was isolated and quantitative reverse transcription-PCR (qRT-PCR) was performed for SNAI genes in 7 or 14 day
bleomycin- or saline-treated lung homogenates. (B) SNAI gene expression was quantified in primary alveolar epithelial type II (ATII) cells freshly isolated
from 7 or 14 day bleomycin-treated lungs, using qRT-PCR. Data are representative of five independent experiments and are expressed as mean (SEM);
* p,0.05, n = 5. (C) Immunohistochemical analysis of a-smooth muscle actin (aSMA), SNAI1 and SNAI2 localisation was performed in paraffin-
embedded tissue from bleomycin- or saline-treated lungs after 14 days.
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by no means proof of EMT in IPF in vivo. Since we were able to
inhibit EMT in ATII cells with siRNAs targeting SNAI1 and
SNAI2, it will have to be demonstrated whether in vivo
interference with these factors may lead to an attenuation of
fibrosis. We also present evidence that both SNAI1 and SNAI2
induce EMT even in the absence of TGFb1, hence recapitulating
their role as potent inducers of EMT. It has to be pointed out
that SNAI1 and SNAI2 may differ in their respective target
genes. Our results suggest that SNAI1 preferably regulated
aSMA, whereas SNAI2 alters epithelial targets. This is of special
interest, as cell-specific SNAI expression in vivo may lead to
distinct cell fates. Given that SNAI2 was the dominant
transcription factor regulated in human IPF tissue, we propose
that some ATII cells undergoing EMT in IPF may exhibit an
aSMA-negative fibroblast phenotype mediated by SNAI2.

In IPF, recent studies were able to demonstrate evidence of
EMT in lung tissue biopsies, suggesting that this process
contributes to the increased pool of (myo)fibroblasts in lung
fibrosis,11 12 as well as in allografts after lung transplantation.38

In contrast, another recent study failed to supply evidence for
EMT in pulmonary fibrosis.39 This discrepancy may be due to

the transient nature and complexity of the EMT process, and
further highlights the challenge in this research field.

Taken together, we demonstrated that SNAI transcription
factors mediate EMT in ATII cells in vitro and their expression
is increased in experimental and human IPF in vivo. We
speculate that EMT is an early event in IPF and that activation
and nuclear translocation of SNAI transcription factors con-
stitute an important early regulator of EMT in ATII cells.
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Figure 8 SNAI transcription factor expression in idiopathic pulmoray fibrosis (IPF). (A) Gene expression analysis of SNAI1 and SNAI2 genes was
performed by quantitative reverse transcription-PCR (qRT-PCR) analysis of total RNA derived from lung homogenates of 12 patients with IPF and nine
transplant donors. (B) SNAI1 and SNAI2 mRNA levels were quantified using qRT-PCR in laser-assisted microdissected septae from five patients with IPF and
five transplant donors. Data are expressed as the mean (SEM); *p,0.05, n = 5. (C) Immunohistochemical analysis of SNAI1 and SNAI2 localisation was
performed in a paraffin-embedded lung specimen from patients with IPF or transplant donors. (D) Western blot analysis of SNAI1 and SNAI2 was performed
three times in lung homogenates obtained from six patients with IPF and six transplant donors. Lamin A/C served as the loading control.
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